
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ALGORITHMS FOR EFFICIENT INTELLIGENCE
COLLECTION

by

Duncan R. Ellis

September 2013

Thesis Advisor: Nedialko B. Dimitrov
Second Reader: Moshe Kress

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

3–9–2013 Master’s Thesis 2011-07-05—2013-09-27

Algorithms for Efficient Intelligence Collection

Duncan R. Ellis

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A

Modern intelligence techniques have drastically increased the rate at which communications data can be intercepted. The increased
ability to collect and store this data poses a significant processing problem for intelligence agencies. We develop a software library,
implementing a previously developed mathematical model of the information selection problem facing these agencies: given a time
constraint, which items should be screened in order to maximize the relevant information obtained. Using our software, we analyze
the performance of several screening strategies on a variety of representative intercepted intelligence networks, which we construct
using real world data sets. We show the model consistently outperforms more naive approaches on networks with clusters of relevant
sources, and highlight the importance of exploration in robust screening strategies.

Analysis of algorithms, intelligence collection, graphical models, Bayesian inference, Markov random fields, networks

Unclassified Unclassified Unclassified UU 121

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

ALGORITHMS FOR EFFICIENT INTELLIGENCE COLLECTION

Duncan R. Ellis
Lieutenant Commander, United States Navy

B.A., University of Iowa, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Duncan R. Ellis

Approved by: Nedialko B. Dimitrov
Thesis Advisor

Moshe Kress
Second Reader

Robert F. Dell
Chair, Department of Operations Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Modern intelligence techniques have drastically increased the rate at which communications
data can be intercepted. The increased ability to collect and store this data poses a significant
processing problem for intelligence agencies. We develop a software library, implementing
a previously developed mathematical model of the information selection problem facing these
agencies: given a time constraint, which items should be screened in order to maximize the rele-
vant information obtained. Using our software, we analyze the performance of several screening
strategies on a variety of representative intercepted intelligence networks, which we construct
using real world data sets. We show the model consistently outperforms more naive approaches
on networks with clusters of relevant sources, and highlight the importance of exploration in
robust screening strategies.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Background and Problem Description 1
1.1 Intelligence Processing . 1

1.2 Prior Research and Similar Problems 2

1.3 Chapter Outline . 3

2 Model Description and Software Implementation 5
2.1 The Model . 5

2.2 Methodology . 8

2.3 Software Implementation . 11

3 Creating Sample Intelligence Networks 15
3.1 The Enron Corpus . 15

3.2 Data Summarization and Visualization 17

3.3 Building Intercepted Intelligence Networks 19

3.4 Building Prior Distributions and Conditional Distributions 26

3.5 Input and Output . 28

4 Algorithms 29
4.1 Algorithm Performance Statistics . 29

4.2 The Value of Knowledge . 29

4.3 Bounding the Performance . 30

4.4 Pure Exploitation . 30

4.5 Softmax . 30

4.6 VBDE . 31

4.7 WEF . 32

4.8 Finite Horizon MDP . 32

vii

5 Analysis 37
5.1 Software Performance . 37

5.2 FHM Performance . 38

5.3 Preliminary Algorithm Comparison 40

5.4 The Value of the Knowledge Model 43

5.5 Sudden Revelation . 46

5.6 Clustering . 48

5.7 Knowledge Value Reduction . 49

6 Conclusion 53
6.1 Summary and Main Conclusions . 53

6.2 Possible Extensions of the Model and Software 55

6.3 Future Research . 57

A GraphBuilder 59
A.1 Module GraphBuilderClass . 59

B MapBuilder 67
B.1 Module MapBuilder . 67

C Algorithms 81
C.1 Module Algorithms . 81

C.2 Module ChoiceNode . 89

C.3 Module RandomNode . 91

D GraphBuilderNaive 93
D.1 Module GraphBuilderNaive . 93

References 99

Initial Distribution List 101

viii

List of Figures

Figure 1.1 The five stages of the intelligence cycle. 1

Figure 2.1 A graphical depiction on an intercepted intelligence network with three
participants. 7

Figure 2.2 A graphical model for Figure 2.1 representing the knowledge of the pro-
cessor. 9

Figure 2.3 Demonstration of the update process on a simple graphical model. . . . 10

Figure 3.1 A distribution of the edge pe values in the complete Enron network. . . 18

Figure 3.2 A histogram showing the distribution of the number of total items avail-
able for screening on the edges of the complete Enron network. 18

Figure 3.3 A small intelligence network with 10 participants. 19

Figure 3.4 A sub-graph representing an intercepted intelligence network created
with the targeted version of trimGraphDeep(). 21

Figure 3.5 Statistics for sub-graphs representing an intercepted intelligence network
created with the targeted and naive versions of trimGraphDeep(). . . 22

Figure 3.6 A sub-graph representing an intercepted intelligence network created
with trimGraphWide(). 23

Figure 3.7 Statistics for sub-graphs representing an intercepted intelligence network
created with the targeted and naive version of trimGraphWide(). . . . 24

Figure 3.8 A sub-graph representing an intercepted intelligence network created
with trimGraphInfection(). 25

Figure 3.9 Statistics for sub-graphs representing an intercepted intelligence network
created with the targeted and naive versions of trimGraphInfection(). 25

ix

Figure 4.1 A partial diagram of ChoiceNode and RandomNode objects created dur-
ing a since iteration of the FHM algorithm. 35

Figure 5.1 Average iteration time for Softmax on a graph created with the infection
- targeted method. 38

Figure 5.2 Average iteration times for Softmax on graphs of increasing size. . . . 39

Figure 5.3 FHM performance comparison. 40

Figure 5.4 The expanded Tanzanian terrorist network. 41

Figure 5.5 Results of algorithm testing on the six sub-graphs created in Chapter III. 42

Figure 5.6 A comparison of the performance between GraphBuilder and Graph-

BuilderNaive. 45

Figure 5.7 Algorithm performance under varying probabilities of sudden revelation
using the Tanzanian terrorist network. 46

Figure 5.8 Algorithm performance under varying probabilities of sudden revelation
using the deep - targeted sub-graph. 47

Figure 5.9 Four artificially constructed graphs designed to test the affect of graph
structure on algorithm performance. 49

Figure 5.10 Algorithm performance of GraphBuilder and GraphBuilderNaivewhen
run on the graphs shown in Figure 5.9. 50

Figure 5.11 Algorithm performance results for the Tanzanian terrorist network with
a knowledge reduction function implemented. 51

x

List of Tables

Table 3.1 Summary statistics for the complete Enron network described in Section
3.1.1. 17

Table 3.2 A conditional probability table created by create_pij_dij(). 27

Table 3.3 A prior joint probability distribution created by create_di_csv() for a
network’s maximal cliques of size two. 27

Table 4.1 Possible outcomes that can result when an edge in a graph with two rele-
vance levels is chosen. 34

Table 5.1 Chosen parameters for initial algorithm performance comparisons. . . . 41

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

API Applied Programming Interface

bcc blind carbon copy

cc carbon copy

CSV Comma Separated Value

FERC Federal Energy Regulatory Commission

FHM Finite Horizon MDP

IO input and output

MDP Markov Decision Process

PE Pure Exploitation

SEC U.S. Securities and Exchange Commission

SMS Short Message Service

SQL Structured Query Language

VDBE Value-Difference-Based-Exploration

WEF Wide Exploration First

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Executive Summary

Modern intelligence techniques have drastically increased the rate at which communications
data can be intercepted for analysis. This increased ability to collect data, coupled with the
growing use of cell phones, SMS messaging, and email as methods of information sharing,
means collection agencies face a potentially overwhelming volume of intelligence data.

The intelligence cycle describes the process by which intelligence data is collected, processed,
and evaluated. It consists of five stages (1) planning and direction, (2) collection, (3) processing,
(4) analysis, and (5) dissemination. In this thesis, we focus on the processing stage, where
an intelligence processor screens the data, considering the information’s reliability, validity,
and relevance. This processing stage often requires human involvement to forward relevant
intelligence data to analysts, and is often time critical. The processor faces an information
selection problem, and must decide which pieces of information to screen and in what order, to
maximize the amount of useful data collected.

When deciding what pieces of information to screen, the processor faces a choice between
exploiting sources that he already knows have provided useful information, and exploring to
potentially uncover new sources. Often the time constraint is such that a processor might not
have adequate time to screen every conversation or investigate every source. While many algo-
rithms and heuristics currently exist to solve these types of exploration-exploitation problems,
they assume independence among the sources, and might not be well suited to data with depen-
dencies. In the context of intelligence collection, dependencies are likely, and even expected.
Consider an intelligence processor faced with a source that is known to be relevant, and another,
which is completely unknown. The presense of communications between the two might lead
the processor to think the unknown source might also be relevant.

We implement a mathematical model to handle the information selection problem and develop
a software library to allow for testing of different heuristic screening algorithms on a variety
of intercepted intelligence network structures. The software consists of the following main
components:

1. GraphBuilder: Uses the mathematical model, and is capable of reading in a large graph
representing an intercepted intelligence network and constructing an object representing
the knowledge of the processor. Methods are supplied which allow for updating of the
processor’s knowledge as items are screened. The software is capable of quickly updating

xv

the probability distributions associated with maintaining the processor’s current state of
knowledge.

2. MapBuilder: Allows for the efficient generation of test networks representing intercepted
intelligence networks from the Enron corpus, which contains the complete contents of
158 employee emails seized while the company was under investigation. Methods for
data visualization, statistics collection, network trimming, and input and output (IO) are
provided.

3. Algorithms: Contains heuristic algorithms for the screening optimization problem, as
well as bounding selection methods representing best and worse case screening scenarios.

We use this software to conduct analysis on the mathematical model and screening algorithms.
Key insights from the analysis are:

1. On graphs where relevant sources are clustered together the model consistently outper-
forms a simpler naive approach which does not account for dependencies. The model
outperforms the naive approach by the largest margins when the intercepted intelligence
network contains pockets of relevant sources surrounded by lower relevance noise. If the
graph does not bear out the dependence assumptions, the model performs poorly.

2. Algorithms which place a high value on early exploration, such as Finite Horizon Markov
Decision Process (FHM), offer the best performance across a wide range of graph struc-
tures and model parameters.

3. The model performs quite well even if the value of knowledge obtained from a known
relevant source decreases over time.

4. Algorithm performance is highly dependent on the graph structure. Networks with a low
density of relevant communications, where the relevant sources are not clustered together,
have performance only slightly above a random selection method.

xvi

Acknowledgements

I wish to share my sincere appreciation to my advisor, Nedialko Dimitrov, for his guidance and
support over the past year. I would also like to extend thanks to my second reader, Moshe Kress,
for his helpful suggestions in refining this thesis. Finally, I express my gratitude to my wife,
Anna, for her love and support during my time at NPS.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:

Background and Problem Description

1.1 Intelligence Processing
1.1.1 The Intelligence Cycle
The intelligence cycle, shown in Figure 1.1, describes the process by which intelligence data is
collected, processed, and evaluated. It consists of five stages: planning and direction; collection;
processing; analysis; and dissemination (Kaplan, 2012). In the planning and direction stage
the specific intelligence requirements are identified. In the collection stage raw information is
gathered from sources, which may be electronic, human, open source media, visual, or other.
The processing and exploitation stage is the conversion of the raw information into finished
intelligence. The processor screens the data, considering the information’s reliability, validity,
and relevance. In particular, data are screened such that only relevant items are considered
for analysis. The processed information is analyzed in the analysis stage, converting the basic
information into a finished intelligence product. The analyst puts the evaluated information in
context and provides assessments suitable for decision makers. Finally, in the Dissemination

stage, the processed information is collated into reports or other forms of communications and
distributed to consumers, which may be either decision or policy makers.

Figure 1.1: The intelligence cycle is the process of collecting and developing raw information into a

�nished product suitable for decision and policy makers and consists of �ve stages, which are listed

in the �gure. In this thesis, we focus on the Processing stage.

1

1.1.2 Information Overload
Modern intelligence collection technologies have drastically increased the rate at which com-
munications data can be intercepted for analysis. This increased ability to collect data, coupled
with the growing use of cell phones, Short Message Service (SMS) messaging, and email as
methods of information sharing, means collection agencies face a potentially overwhelming
volume of intelligence data (Hedley, 2007).

In this thesis, we focus on the processing stage, in which the operator, which we shall refer to
as a processor, searches through and screens the data, using the results to aid in the preparation
of the intelligence product. This processing stage often requires human involvement to forward
relevant intelligence data to analysts. This stage is often also time critical; the processor must
decide which pieces of information to screen and in what order, to maximize the amount of
useful information collected within his time constraint. Faced with a potentially enormous
volume of intelligence data, the processor might only have sufficient resources to screen a tiny
percentage of the available data.

1.2 Prior Research and Similar Problems
1.2.1 Operations Research and Intelligence
The applications of operations research to intelligence problems is considered by Kaplan (2012)
and is surprisingly limited. During the Cuban missile crisis of October 1962, the CIA retro-
spectively applied Bayes’ rule to intelligence data to update the probability of Soviet missile
shipments to Cuba (Zlotnik, 1967). Deitchman’s Guerrilla model (Deitchman, 1962), followed
by Schaffer (1968) addresses situational awareness, capturing information asymmetry between
conventional and guerrilla forces. Atkinson and Wein (2010) develop models to locate terrorists
in criminal networks by searching for criminal activities such as bank robberies or explosives
procurement. Although other examples of intelligence research can be found in the literature,
many focus on stage four, analysis and production, and do not address the question of informa-
tion overload in the processing stage.

1.2.2 Ranking and Selection and Exploration/Exploitation
The problem of the processor has many similarities to traditional ranking and selection and
exploration/exploitation problems. In ranking and selection, the problem can be defined as
selecting the best alternative among a finite number of choices, where uncertainty exists in
each alternative. While different methods are available to solve ranking and selection problems

2

(Fu et al., 2007), many do not address correlations between alternatives. Frazier et al. (2009)
suggests a method to take correlations between alternatives into account, by using a knowledge
gradient policy.

The processor faces a choice between exploiting sources that he already knows have provided
useful information in the past, and exploring to potentially uncover new sources. Often, the time
constraint is such that a processor might not have adequate time to screen every conversation
or investigate every source. While many algorithms and heuristics currently exist to solve the
exploration-exploitation problem (Berry and Fristedt, 1985), they assume independence among
the sources, and might not be well suited to data with dependencies.

Dependencies are likely and indeed even expected in the context of intelligence collection.
Consider a source A that the processor knows to be relevant. The presence of communications
between A and another source B might lead the processor to think that B might also be a relevant
source. These dependencies differentiate the intelligence collection problem from a typical
ranking and selection or exploration-exploitation problem and might prove to be problematic if
existing algorithms or heuristics are naively applied.

1.2.3 Information Selection in Intelligence Processing
In his master’s thesis, Nevo (2011) considers a social communication network where a processor
faces a pool of records, and must determine a screening strategy to maximize the number of
relevant conversations obtained in a limited time period. He proposes a mathematical model
utilizing methods from graphical models, social networks, random fields, and Bayesian learning
to represent the knowledge of the processor. A summary of the problem setting and model can
be found in Chapter II, with a complete description available in his thesis.

1.3 Chapter Outline
The thesis has six chapters. In Chapter II, we describe the mathematical model proposed by
Nevo (2011) and describe a software tool based on this model. In Chapter III, we discuss
methods of creating sample intercepted intelligence networks from the ENRON Corpus email
database. Chapter IV discusses possible algorithms and heuristics to handle the information se-
lection problem. In Chapter V we examine the performance of these algorithms and in Chapter
VI we summarize the research and propose possible software modifications and model exten-
sions suitable for future work.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:

Model Description and Software Implementation

In this chapter we formalize the problem setting and describe a mathematical model using tech-
niques from graphical models, social networks, random fields and Bayesian learning. Finally,
we describe the specific methodology and software implementation, which we use to test screen-
ing strategies.

2.1 The Model
2.1.1 Problem Setting
During the collection stage, intelligence data is intercepted from available sources, such as
email, telephone conversations, and text messages. Each piece of data represents a conversa-
tion between two participants. The total of these intercepted conversations represents a network
where the participants are nodes and an edge exists between nodes if they share at least one
conversation, which we shall refer to as an item. This network is passed to the intelligence pro-
cessor, along with a list of analysis objectives formulated by an intelligence analyst or agency,
that the processor will use to assign a relevance value to any screened item. The processor must
identify as many relevant items as possible in a given time period. This time period is generally
not sufficient to screen the entire collection, and in some cases might only allow sufficient time
to screen a very small percentage of the intercepted network. The processor therefore desires a
screening strategy which maximizes the expected number of relevant items identified.

While items could have multiple levels of relevance depending on the provided intelligence
objects, we consider a binary setting for simplicity - that is, an item is either relevant or irrel-

evant. Additionally, we consider the relevance of the participants, as information providers, to
be measured on a discrete scale, for example very low, low, medium, high, and very high. The
relevance values of two participants provides insight to the frequency of relevant items shared
between them.

Prior to beginning the screening process, the processor is aware of the network topology, to
include the number of available items between each pair of participants that are available for
screening. The processor is also provided with some partial information about the network
participants, enabling the establishment of an initial prior joint probability distribution for their

5

relevance values. The range of certainty the processor has about each participant’s relevance
may vary from complete uncertainty to absolute certainty. The processor also has some infor-
mation from past screenings in the form of a conditional probability distribution concerning the
probability of uncovering a relevant item between two participants if their relevance values are
known.

The screening process proceeds in rounds. In each round, the processor selects an item for
screening. The screening reveals the item as either relevant or irrelevant. In addition to the
relevance of the item, the screening could also uncover relevance information about the par-
ticipants, which we shall refer to as sudden revelation. These sudden revelations can occur in
either relevant or irrelevant conversations, and serve to immediately identify with certainty the
relevance value of a participant. We assume that the screening proceeds without error, so the
relevance value of both the conversations and participants assigned by the processor represent
their true relevance. The probability of screening a relevant conversation between two par-
ticipants is a random variable whose probability distribution is updated in a Bayesian manner
during the screening process. Each round reveals information that also allows the processor to
update the probability distribution associated with the value of the participants on the screened
edge.

2.1.2 Model Notation and Assumptions
We model the communications data the processor faces as a graph G = (V,E). Each node
represents a source with a discrete relevance value du. Each edge (u,v) ∈ E represents a set of
items between two participants that are available for screening. Let q(e) be the subset of items
for a single edge e ∈ E. Assuming independence, this subset of relevance items q(e), forms a
random sample from a Binomial distribution.

We model the probability that an item in the subset q(e) is relevant as pe, which is the parameter
for the binomial distribution from which items in q(e) are randomly drawn. The value of pe is
unknown to the processor. Although pe is a continuous variable, with values [0,1], for model
simplification we consider a set of discrete values. We model the probability that the value of
du or dv will be revealed while screening an item in q(u,v) as an independent event for each of
the two nodes, with a fixed probability c. If the values of du,u ∈V , and pe,e ∈ E, are known to
the processor, along with the graph topology of G and the subsets q(e),e ∈ E, then the problem
of the processor would be trivial - always screen an item from the edge e with the highest pe.
However, both the values of du and pe are not known to the processor with certainly, rather are

6

represented by probability distributions which are updated during the screening process. Figure
2.1 shows a simple network between three participants where each edge has five items. The
possible values of pe and du are also given.

Figure 2.1: A graphical depiction of an intercepted intelligence network with three participants; A,
B, and C, with possible discrete relevance values (du) of either high or low. Each pair of participants
shares �ve items between them. The probability of an edge having a relevant item (pe) is also discrete,
with the values .2 or .8. Prior to beginning the screening process, the processor does not known the
values of the du's or pe's for any of the nodes or edges in the graph.

Since the values of pe are unknown the processor, we use the random variable Pe to represent
the processors belief of its value. Likewise, we let Du represent the belief value of du, although
unlike the value of pe, the true value of du may be revealed to the processor during the screening
process in the form of sudden revelation.

In addition to the graph topology and number of items in each edge, the processor begins
the screening process with an initial prior distribution for D, where D = (D1, · · · ,D|V |). The
Hammersley-Clifford theorem (Koller and Friedman, 2009) states this distribution can be spec-
ified as a product of potential functions on the maximal cliques of G. If the potential function
ΦC(DC) is given for all maximal cliques, then the distribution of D is the product of those po-
tential functions. The processor is also provided a conditional probability distribution for Pe,
given the relevance values of the participants are known. This conditional distribution is of the
form Pr[Puv = p|Du = du,Dv = dv],u,v ∈V .

7

2.1.3 Updating Process
During the screening, the processor identifies items as either relevant or irrelevant, or perhaps
observe some sudden revelation which will reveal the relevance value of a node. This informa-
tion is used to update the processor’s knowledge, represented in the model as the joint probabil-
ity distribution of [P,D] denoted as Pr[P,D]. With the random variables D forming a Markov
random field and the assumption that the processor has a joint probability distribution of the
relevance values of the participants and a conditional probability distribution for pe, we specify
the joint probability distribution for Pr[P,D] as

Pr[P,D] =
1
Z ∏

C∈C
ΦC[DC] ∏

(u,v)∈E
Pr[Puv|Du,Dv] (2.1)

where we let C represent the set of maximal cliques in G, and use Z as a normalizing constant.
This joint probability distribution Pr[P,D] is updated during the screening process. We let
Sa = 1 if an item on an edge is relevant, and 0 otherwise. Let S = (Sa,a ∈ q(u,v),(u,v) ∈ E).
We form a new joint probability distribution P[P,D,S] including this additional knowledge as

Pr[P,D,S] =
1
Z ∏

C∈C
ΦC[DC] ∏

(u,v)∈E
Pr[Puv|Du,Dv] ∏

a∈q(u,v)
Pr[Sa|Puv] (2.2)

where Pr[Sa|Puv] = Puv if Sa = 1, and 1−Puv otherwise. The updating process when the pro-
cessor uncovers a relevant item can therefore be expressed as Pr[P,D,S|Sa = 1]. If sudden rev-
elation reveals the relevance value of a participant, we express the update as Pr[P,D,S|Du = d]

where d is the discrete relevance value, for example low, medium, or high.

2.2 Methodology
We use graphical models to represent the dependencies between the variables (Pearl, 1986).
Factors for the joint probability distribution of D, ΦC[DC], are specified for every maximal
clique in the graph. Factors are also specified to represent the conditional probability distribu-
tions for pe, Pr[Puv|Du,Dv]. An example graphical model is shown in Figure 2.2 for the simple
intelligence network of Figure 2.1 between three participants (A,B,C) which form a single clique
of size three.

This clique is represented by the factor Φ{A,B,C}[DA,DB,DC], and its initial assumed distribution

8

Figure 2.2: A graphical model for Figure 2.1 representing the knowledge of the processor. Factors
Φ{A,B,C}[DA,DB,DC], Pr[PAB|DA,DB], Pr[PBC|DB,DC], and Pr[PAC|DA,DC] are speci�ed to represent
the joint distribution of the Du's and the conditional probabilities of the Pe's. Edges (separators) are
denoted by lines, and exist between factors if they share at least one variable. After screening a single
item between A and B and �nding it relevant, the factor Pr[PAB|SAB = 1] is added to the model,
denoted by a dashed edge. The initial marginal distribution for DA is also calculated by marginalizing
Φ{A,B,C}[DA,DB,DC] and shown in the upper left.

9

is shown. Factors Pr[PAB|DA,DB], Pr[PBC|DB,DC], and Pr[PAC|DA,DC] represent the condi-
tional probabilities for Pe for each edge. The initial marginal distribution for a particular Du can
be calculated by marginalizing Φ{A,B,C}[DA,DB,DB]. In this initial distribution, Pr[DA = high]

and the Pr[DA = low] are identical.

A sample update process is provided, and the resulting change in Φ{A,B,C}[DA,DB,DC] is shown
in Figure 2.3. The processor screens a single item between participants A and B and determines
that it is relevant to the intelligence query. To represent this process in the model a new factor
of the form Pr[PAB|SAB = 1] is introduced. The introduction of this factor can be seen in Figure
2.2.

Figure 2.3: The update process sums out the SAB variable after the conversation is screened. The
reduced Pr[PAB] factor is multiplied against the Pr[PAB|DA,DB] factor. Then, the resulting factor
product is multiplied against Φ{A,B,C}[DA,DB,DC]. Our updated marginal distribution for DA (lower
right) now shows we believe A more likely to be of high relevance than low.

Figure 2.3 shows the remainder of the update process, which happens when the SAB variable is
marginalized. First, the reduced Pr[PAB] factor is multiplied against the Pr[PAB|DA,DB] factor.

10

Then, the resulting factor product is multiplied against Φ{A,B,C}[DA,DB,DC]. By this method,
we update our prior distribution of D. After normalization of our new Φ{A,B,C}[DA,DB,DC] we
can calculate an updated marginal distribution for DA. As is shown, after screening a single item
between A and B, and finding it to be relevant, our belief about A is updated. The Pr[DA = high]

now equals .59 and Pr[DA = low] equals .41. We now believe A is more likely to be of high
relevance than low. The next section describes a software implementation of this graphical
model structure.

2.3 Software Implementation
In this section we describe a software implementation of the above model and methodology.
This software, which we shall refer to as GraphBuilder, is capable of reading in a large
graph representing an intercepted intelligence network and creating an object that represents
the knowledge of the processor regarding that network. Additionally, methods are supplied
which update the processor’s knowledge, either from the relevance value of a single screened
item, or by sudden revelation of a participant’s value. Finally, the software is capable of quickly
calculating the joint probability distribution for D, which yields the marginal distributions for
any DU ,U ∈V . The software builds on the gPy Python library developed by James Cussens at
the University of York. 1 Complete Applied Programming Interface (API) documentation for
GraphBuilder can be found in Appendix A.

2.3.1 Object Creation and Input Requirements
The GraphBuilder software creates an object that represents the knowledge of the processor.
This knowledge is a collection of factors ΦC[DC], specified for every maximal clique in an inter-
cepted intelligence graph G. The knowledge also includes factors representing the conditional
probability distributions for Pe. To construct these factors, GraphBuilder requires the follow-
ing input parameters. Construction of these input parameters is discussed in detail in Chapter
III.

1. A graph representing the intercepted intelligence network. Along with the physical topol-
ogy that is known to the processor, node and edge attributes are also imported. Node
attributes are the true relevance value of each participant. Edge attributes are the pe val-
ues and the number of items available for screening. This graph structure represents the

1A complete description of the gPy library for graphical models can be found at the following site. Full
documentation and a user manual are also provided. http://www-users.cs.york.ac.uk/jc/teaching/agm/gPy/

11

ground truth, and is used to assess the performance of screening strategies. Examples of
intercepted intelligence networks can be found in Section 3.3.

2. A conditional probability table for Pe as described in Section 2.2. Table 3.2 provides an
example of a conditional probability table.

3. Potential functions Φ|C|, for each maximal clique size in the graph. Table 3.3 provides an
example for a maximal clique of size two.

2.3.2 Updating
As the processor screens items, the GraphBuilder object is updated to include the new knowl-
edge gained, whether that knowledge is the relevance value of a screened conversation, or sud-
den revelation for a participant. Methods are provided to perform random draws for item screen-
ing and sudden revelation, and make subsequent edge and node updates to the GraphBuilder

object.

1. Edge Updates: Two methods are provided for edge updates. The random_draw() method
returns a random draw (either relevant or irrelevant) for an item on a requested edge,
however doesn’t write back the results of this screening to the GraphBuilder object. This
random draw is weighted with the true value of pe (which is unknown to the processor) for
the edge requested. The edge_update() method allows the user to specify a relevance
value for an item and updates the GraphBuilder object.

2. Node Updates: Two similar methods are provided for node updates. The sudden-

_relevance_simple() method returns the relevance value of a specified participant if
sudden revelation occurs. This is a weighted draw, using the specified value of c (prob-
ability of sudden revelation) for the node. This method doesn’t write back the results of
any sudden revelation to the GraphBuilder object. The node_update() method allows
the user to specify a relevance value for a participant and updates the GraphBuilder

object.

2.3.3 Conditioning
In addition to the updating methods described in Section 2.3.2, GraphBuilder provides meth-
ods for calculation of the edges that have a high probability of returning a relevant conversation
- i.e., a high E[Pe] value. The methods build upon conditioning functions provided in the gPy li-
brary, which allow for the efficient calibration of a graphical model. Calibration ensures that all

12

factors associated with the cliques and separators 2 are the appropriate marginal distributions.
The highest_expected_pij() method returns either an E[Pe] value for a specified edge, or
a sorted list of all E[Pe] values for the entire graph. The expected_di() method returns the
marginal distribution for a requested participant.

2Full documentation concerning gPy graphical model structure can be found at http://www-
users.cs.york.ac.uk/jc/teaching/agm/gPy/Doc/API/

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

CHAPTER 3:

Creating Sample Intelligence Networks

To facilitate testing of algorithms for intelligence collection, we desire the ability to construct
test networks that are representative of real-world intercepted intelligence networks. These
test networks must contain not only the topology known to the processor prior to beginning
the screening process, but also the “ground truth“ – that is the true values of du,∀u ∈ V , and
pe,∀e∈E, which we require to assess the performance of screening methods. We also desire the
ability to create test networks with different topologies and du and pe distributions to measure
the effect of their variation. For example, we may wish to test the relationship between the
variance of pe and the effectiveness of a particular screening strategy.

We create a software tool, named MapBuilder, which allows for the efficient generation of test
networks representative of real world intercepted intelligence networks from a real world data
source, the Enron corpus. Additionally, methods for data visualization, statistics collection, and
network trimming are provided. The capabilities of the MapBuilder tool are discussed in detail
below, with complete API documentation provided in Appendix B for all referenced methods.

3.1 The Enron Corpus
In 2002, the Federal Energy Regulatory Commission (FERC) and U.S. Securities and Exchange
Commission (SEC) publicly released a corpus of emails from 158 Enron employees to enable
the public to better understand the motivations for their investigation of the company (Diesner
and Carley, 2005). The corpus contains the contents of these 158 employee’s email boxes over
a time horizon of 3.5 years.3 Diesner and Carley (2005) note that the corpus is of interest
to researchers studying social networks, organizational behavior, and organizational theory as
it enables the analysis of inter-company interactions over a multi year time horizon. For our
purposes, the corpus is a rare example of a publicly available large communications network.

In Section 3.1.1 we describe a detailed procedure for transforming the raw corpus into a com-
plete communications network representing the “ground-truth.” In Section 3.3, methods for
trimming the complete network to create intercepted intelligence networks are discussed.

3The complete corpus is available at http://www-2.cs.cmu.edu/ enron/

15

3.1.1 Creating the Complete Network
In its raw form, the Enron corpus contains 619,446 email messages contained in the mailboxes
of 158 employees, with each separate email message stored as a text file. Although only 158
email boxes are contained in the corpus there are emails from 85,291 distinct email addresses,
because many messages were either sent or received by participants outside the corpus.

To transform the raw corpus into a network we first import the data into a Structured Query
Language (SQL) database for ease of manipulation using the buildEnron() method. Our
database contains a single table, with each entry representing a conversation between two par-
ticipants. We create “from name”, “to name”, “to type”, and “message text” fields for each
entry. Emails with multiple recipients, including carbon copy (cc) and blind carbon copy (bcc)
recipients, are considered separate conversations and separate table entries are created for each
pairing. For example, an email sent by participant A to participant B, with a cc sent to partic-
ipant C, would generate two table entries; the first would be between A and B and the second
between A and C. From the contents of each email, we concatenate the subject and message
text and store it in the “message text” field. The expansion of the corpus in this manner yields a
table that contains 3,065,082 emails between 85,291 distinct addresses.

We use the buildGraph() method to create the network directly from the SQL database. Each
entry in the database table represents a single item between two participants. Keywords located
in the “message text” field are used to define these items as either relevant or irrelevant to a
particular intelligence query. For example, we might wish to denote every item that mentions
“New York” or “Washington” as relevant.

An edge exists between nodes (participants) if they share at least one item between them. We
record the number of relevant and irrelevant items on each edge and save these values in the
network structure as edge attributes. We set the true pe value for each edge as the proportion
of the items on the edge that are relevant. We define the possible levels for the participant
relevance values (du), for example low, medium, and high. We then calculate the du value for
each node by sorting the nodes by the number of relevant items on their adjacent edges. We
use a percentile function to divide the nodes into groups corresponding to the chosen discrete
relevance values. This completes the creation of the complete network.

16

3.2 Data Summarization and Visualization
We provide methods to allow for the comparison of different networks created using the Map-

Builder software. By tabulating network attribute statistics such as the number of relevant
conversations, or edge pe values, we summarize the differences between test networks. Addi-
tionally, we provide an efficient visualization schema for viewing larger networks that captures
and highlights the features of the network.

3.2.1 Graph Statistics
The graphStats() method provides summary statistics for a network. The method calculates
the number of nodes of each relevance value, and the total number of relevant and irrelevant
items in the network. The largest maximal clique size and maximum node size (both by total
and relevant items on its adjacent edges) are also calculated. Table 3.1 shows attributes of
the complete Enron network created in Section 3.1.1 by buildGraph(). Items containing the
words New York, Washington, or California are considered relevant in this example. We note
that in this network only a very small percentage of items are relevant to the intelligence query.

Table 3.1: Summary statistics for the complete Enron network described in 3.1.1. Items with the
keywords New York, Washington, or California are considered relevant. In addition to information
provided in the table, graphStats() also calculates the largest maximal clique in this graph as
containing 36 nodes. The largest node (sorted by total) has 106,985 items on its adjacent edges.
The highest number of relevant items on edges adjacent to a node is 8,872.

Relevance Count Proportion

Node
High 97 .00114

Medium 228 .00267
Low 84,966 .99619

Edge
Relevant 91,365 .02981

Irrelevant 2,973,717 .97019

Two additional methods are provided which generate histograms for edge data. The PEDist()
method plots a histogram of the edge Pe values, and also provides the ability to export the data to
a text file. Figure 3.1 shows the distribution of Pe values for the complete Enron network, using
the keywords from Section 3.2.1. The conDist() method plots a histogram for the number of
relevant or total items available for screening on each edge. Figure 3.2 shows the distribution of
the number of total items available for screening on each edge for the complete Enron network.

17

Figure 3.1: A distribution of the edge pe values in the complete Enron network.

Figure 3.2: A histogram showing the distribution of the number of total items available for screening
on the edges of the complete Enron network. The histogram is right censored at 100 items as the
extremely long right tail makes visualization di�cult. Edges with over 100,000 items are present in
the network.

3.2.2 A Schema for Network Visualization
Many of the network structures we create are relatively large (greater than 200 nodes), and even
summary information provided by graphStats() can mask certain structural characteristics.
The drawGraphRels() method is capable of displaying large intelligence networks while cap-
turing important structural attributes, such as node relevance, pe values, and the location of
maximal cliques. A complete description of drawGraphRels(), to include tuning parameters
which allow for finer control over the default drawing parameters, is given in Appendix B.

Figure 3.3 provides an example drawGraphRels() output for a small network. We denote the

18

discrete relevance value of each node by its color. In Figure 3.3 nodes with high relevance are
green, nodes with medium relevance are blue, and nodes with low relevance are red. The number
and assignment of colors can be specified to customize the display. Node sizing is a function of
the number of relevant items in their adjacent edges. The edge thickness is a linear function of
the pe values, with higher pe edges having thicker lines than those with low pe values.

Figure 3.3: A small intelligence network with 10 participants. Three of the participants have a high
relevance value, and are green. Two participants are of medium relevance and are blue, and the
remaining participants are of low relevance and are red. The larger the node size, the more relevant
items are contained in its adjacent edges. Edges with higher thickness have higher pe values, denoting
the probability of screening a relevant item on these edges is higher.

3.3 Building Intercepted Intelligence Networks
The size of the complete Enron communications network makes it impractical for testing screen-
ing techniques, as the time to update the processor’s knowledge would be prohibitively long.
In order to conduct efficient testing, we require the ability to conduct multiple runs of each
algorithm over several hundred iterations while still maintaining reasonable run times.

In this section, we discuss some methods for creating smaller intercepted communications net-
works, which we shall refer to as sub-graphs, from the complete network. This sub-graphs are
created in a manner such that they are still representative of real-world communications net-
works. We propose three basic network trimming techniques using the methods trimGraph-
Deep(), trimGraphWide(), and trimGraphInfection(). Complete API documentation is
provided in Appendix B. We intend these methods to approximate methodologies a real world
agency might use during the collection stage.

19

We further separate these trimming methodologies into targeted and naive versions. In a naive
collection method, the collection agency has no prior information concerning the relevance of
participants in the complete network. In the targeted version, there exists some partial informa-
tion that allows the agency to better focus their collection efforts, particularly in determining
the initial nodes to add to the sub-graph.

3.3.1 The Deep Method
The first trimming method we propose is trimGraphDeep(), a method for creating intercepted
intelligence network sub-graphs using what we refer to as a deep method. We first consider a
targeted version of this methodology, in which the intelligence agency has some prior informa-
tion concerning the relevance values of participants in the complete network.

We begin by identifying a specified number of participants in the complete Enron network
with the highest relevance values. We think of this step as the collection agency having targeted
intelligence on the most likely suspects. We then add all neighbors of these targeted participants
to the sub-graph. The remainder of the sub-graph creation method proceeds for a specified
number of rounds.

In subsequent rounds, the node with the highest relevance value is identified from the neighbors
added during the previous round, and its neighbors are added to the sub-graph. We refer to this
method as the deep method as the collector is only considering candidates for the next node of
maximum relevance from the last group of neighbors added to the sub-graph, going as deep into
the network as the number of rounds permits.

Even with limited rounds, the size of the sub-graphs created with this technique are generally too
large to be processed by the GraphBuilder software. Using the relevance keywords California

and Washington, a sub-graph created by trimGraphDeep() with only three rounds has 1,723
nodes. To reduce the sub-graph to a more manageable size, we apply a method of probabilistic
pruning, removing all degree one nodes with a specified probability p. With a pruning proba-
bility of p = .9, three rounds of trimGraphDeep() produces a sub-graph of approximately 200
nodes, a significant reduction in size.

In addition to the targeted method, we also consider a naive deep method. The rounds proceed
as in the targeted version, however instead of adding the neighbors of the node with the highest
relevance value, we add the neighbors of the node with the highest number of total items (both
relevant and irrelevant items) on its adjacent edges.

20

Sub-graphs constructed using the trimGraphDeep() method might be similar to intercepted
intelligence networks created by phone tapping. An initial participant’s phone, chosen on prior
information concerning the participant’s relevance, is tapped, and all conversations between that
participant and second parties are recorded. From those second parties, either further targeted
intelligence or simply call volume leads to the next phone to be tapped, and the collection
continues. Figure 3.4 shows a visual representation for a graph created by trimGraphDeep().
The targeted method was used, with one initial node, three rounds of screening, and all degree
one nodes pruned with probability .9. Figure 3.5 shows summary statistics for the graph in
Figure 3.4 and a similar graph constructed with the naive version of trimGraphDeep().

Figure 3.4: A sub-graph representing an intercepted intelligence network created with the targeted

version of trimGraphDeep(). Three rounds of screening, one initial node, and all degree one nodes

pruned with probability .9 are used as input parameters.

3.3.2 The Wide Method
Our next trimming method is trimGraphWide(), a method for creating sub-graphs using a
wide method, which is similar in its basic structure to the deep method described in Section
3.3.1. Similar to trimGraphDeep(), the method proceeds for a specified number of rounds
before termination. We consider a targeted version where initial nodes added to the sub-graph

21

are determined by selecting the participants with the highest relevance values. We then add all
neighbors of these targeted participants to the sub-graph.

Figure 3.5: Statistics for sub-graphs representing an intercepted intelligence network created with the

targeted and naive versions of trimGraphDeep(). Three rounds of screening, one initial node, and all

degree one nodes pruned with probability .9 are used as input parameters. For the targeted version,

the largest maximal clique in the graph has 3 nodes. The largest node (sorted by total items) has

84,944 items in its adjacent edges. The highest number of relevant items in edges adjacent to a node

is 64,256. For the naive version, the largest maximal clique in the graph also has 3 nodes. The largest

node (sorted by total items) has 106,999 items in its adjacent edges. The highest number of relevant

items in edges adjacent to a node is 5,566.

In subsequent rounds, we add nodes with a slightly different strategy than trimGraphDeep().
Rather than consider candidates for the next node of maximum relevance only from the group
of neighbors added to the sub-graph in the previous round, we consider ALL nodes previously
added to the sub-graph. We refer to this method as the wide method because the collector is con-
sidering candidates from a larger group than in the deep method. This method is slightly more
computationally expensive, as every round we must calculate a sorted list of node relevance val-
ues for a sub-graph size of increasing size. After the specified number of rounds is completed,
the graph is probabilistically pruned, removing all degree one nodes with p. For a given number
of rounds, trimGraphWide() method produces similar sized graphs as trimGraphDeep().

Figure 3.6 shows a visual representation for a graph created by trimGraphWide(). The targeted
method was used, with one initial node, three rounds of screening, and all degree one nodes
pruned with probability .75. Figure 3.7 shows summary statistics for the graph in Figure 3.6

22

and a similar graph constructed with the naive version of trimGraphWide().

Figure 3.6: A sub-graph representing an intercepted intelligence network created with

trimGraphWide(). Three rounds of screening, one initial node, and all degree nodes pruned proba-

bility .75 are used as input parameters.

3.3.3 The Infection Method
Our final method of sub-graph creation is quite different from the methods described in Sec-
tions 3.3.1 and 3.3.2. The trimGraphInfection() method attempts to simulate results from
collection methods used in the interception of wireless signals. In this case, we assume the
collector is only able to intercept and record a proportion of items (signals) emitted or received
by a participant, where as in trimGraphDeep() and trimGraphWide() we intercepted all of
them.

The screening process proceeds for a specified number of rounds. In the targeted version, we
begin by identifying a specified number of participants with the highest relevance values, and
add them to the sub-graph. During each round, edges adjacent to nodes already existing in the
sub-graph are added with probability p, which we shall refer to as the infection probability.
The naive version differs only in that the initial participants are added to the sub-graph based

23

on the total number of items on their adjacent edges, rather than relevant items. This infection

method is more likely to add nodes to the sub-graph with high degree, as those nodes have
more adjacent edges, and subsequently a higher probability of infection. Figure 3.8 shows a
visual representation for a graph created by trimGraphInfection(). The targeted method is
used, with an upper bound of 200 nodes and an infection probability of .001. Figure 3.9 shows
summary statistics for the graph in Figure 3.8 and a similar graph constructed with the naive
version of trimGraphInfection().

Figure 3.7: Statistics for sub-graphs representing an intercepted intelligence network created with the

targeted and naive version of trimGraphWide(). Three rounds of screening, one initial node, and

all degree nodes pruned with probability .75 are used as input parameters. For the targeted version,

the largest maximal clique in the graph has 3 nodes. The largest node (sorted by total items) has

84,944 items in its adjacent edges. The highest number of relevant items in edges adjacent to a node

is 64,256. For the naive version, the largest maximal clique in the graph has 4 nodes. The largest

node (sorted by total items) has 106,999 items in its adjacent edges. The highest number of relevant

items in edges adjacent to a node is 8,268.

24

Figure 3.8: A sub-graph representing an intercepted intelligence network created with
trimGraphInfection(). 184 nodes and an infection probability of .001 are used as input parameters.

Figure 3.9: Statistics for sub-graphs representing an intercepted intelligence network created with

the targeted and naive versions of trimGraphInfection(). An upper bound of 200 nodes and

an infection probability of .001 are used as input parameters. For the targeted version, the largest

maximal clique in the graph has 3 nodes. The largest node (sorted by total items) has 84,944 items

in its adjacent edges. The highest number of relevant items in edges adjacent to a node is 64,256.

For the naive version, the largest maximal clique in the graph has 2 nodes. The largest node (sorted

by total items) has 106,999 items in its adjacent edges. The highest number of relevant items in

edges adjacent to a node is 1,994.

25

3.4 Building Prior Distributions and Conditional Distribu-
tions

In Section 2.1.2 we discuss the requirement that the processor has an initial prior joint dis-
tribution of the node relevance values, D, and a conditional probability of the form Pr[Puv =

p|Du = du,Dv = dv],u,v ∈V . In a real world setting, the processor might generate these distri-
butions from analysis of previous intelligence data or by consulting with subject matter experts.
To establish reasonable distributions for testing we again consider the Enron corpus network,
generating our prior distributions of D and conditional distributions for pe directly from the
data. We can think of the networks we create as being similar to a repository of past analysis
where the processor is able to see both the true participant relevance values ∀V ∈ G, and the
true pe values, ∀E ∈ G. We provide methods in MapBuilder to generate both the initial prior
distribution of D and the conditional distribution for pe from Enron network data.

3.4.1 Building the Conditional Distribution for pe
The create_pij_dij_csv()method creates a conditional probability table for Pr[Puv = p|Du =

du,Dv = dv],u,v ∈V . We use a two step method to create the table. In the first step, we iterate
through the edges of the graph, and sort the true pe values into bins determined by the relevance
of their adjacent nodes. For example, we locate all pe values in the graph where both adjacent
nodes have high relevance values, and place those pe values in a bin. These bins represent a
discrete probability distribution of the true pe values, conditional on the node relevance values.

In the second step, we use a step function to further sort each bin of pe values into sub-bins,
where each sub-bin is a discrete pe level specified as a parameter to the create_pij_dij_csv()
method. Table 3.2 shows sample output for a conditional probability table with two node rele-
vance values and two pe levels. We note that in this example, knowing both participants have
a high relevance value leads us to estimate the probability the pe value is .75 as twice as likely
than in the case where both participants have low relevance values. The conditional probability
tables created by create_pij_dij_csv() are written to Comma Separated Value (CSV) files
which can be imported by a GraphBuilder object when we create our graphical model.

3.4.2 Building the Prior Distribution
The create_di_csv() method is used to build tables for the prior joint distribution of D using
similar techniques as create_pij_dij_csv() in Section 3.4. We specify a prior joint distri-
bution for the values of du for every maximal clique size in the graph, and write each one to

26

a separate CSV file suitable for importing into GraphBuilder during creation of the graph-
ical model. For example, in a graph that contains maximal cliques of two and three nodes,
we would create a prior joint probability distribution for Pr[Du = du,Dv = dv],u,v ∈ V and
Pr[Di = di,Du = du,Dv = dv], i,u,v ∈V .

Table 3.2: A conditional probability table for Pr[Puv = p|Du = du,Dv = dv] created by

create_pij_dij() with two node relevance levels and two pe levels. We note that in this case,

knowing both participants have a high relevance value leads us to estimate the probability the pe

value is .75 as twice as likely than in the case where both participants have low relevance values.

Node Relevance Node Relevance pe level Probability

high high .25 .94805
high high .75 .05195
low high .25 .95163
low high .75 .04839
low low .25 .97583
low low .75 .02427

To construct the prior distributions, we first separate the graph into its maximal cliques, and
then group these cliques by their size. Each clique in the graph has an associated set of node
relevance values. For example, a clique of size two might have one node with high relevance,
and one node with medium relevance. For each clique size, we record the frequency that each
node relevance set occurs, and use the resulting frequencies to construct a prior joint probability
distribution for the clique. Consider a graph with two cliques; the first clique has two high

relevance nodes and the second clique has two low relevance nodes. Our prior joint distribution
for D would be Pr[Du = high,Dv = high] = .5 and Pr[Du = low,Dv = low] = .5. Table 3.3
shows a sample joint probability distribution created for a network’s maximal cliques of size
two.

Table 3.3: A prior joint probability distribution created by create_di_csv() for a network's maximal
cliques of size two.

‘

Node Relevance Node Relevance Probability
high high .03680
high low .17296
low high .17296
low low .61725

27

3.5 Input and Output
We provide input and output functions in MapBuilder to allow for more convenience in working
with sub-graphs created from the Enron network. The writeGraph_CSV() method writes a
graph to a CSV file and readGraph_CSV() reads in a CSV file from a previously saved graph.
By providing these two functions, we allow for graphs to be created and stored for further use
and analysis by the GraphBuilder software.

28

CHAPTER 4:

Algorithms

In this chapter we describe the Algorithms module, which contains heuristic algorithms for
the screening optimization problem, as well as bounding methods representing best and worst
case screening scenarios. Full API documentation for the Algorithms module can be found
in Appendix C. Parameter tuning and the performance of these algorithms on networks created
using techniques in Chapter III, is discussed in Chapter V.

4.1 Algorithm Performance Statistics
In order to compare algorithm performance, we establish a set of common statistics. Our first
statistic is the number of relevant items identified by the algorithm in a specified number of
iterations. This is our principal metric for performance, as our goal is to maximize the amount
of relevant data the processor obtains during a limited screening time. Additionally, for each
screened edge, we record the difference

max
e
{pe}− pe∗ (4.1)

where e∗ is the edge screened by the algorithm. This is simply the distance between the pe value
of the optimal edge (highest pe valued edge with items available for screening) and the pe value
of the chosen edge. Finally, we return the total run-time and the average iteration run-time.

4.2 The Value of Knowledge
Each iteration of an algorithm results in the identification of either a relevant or irrelevant item.
We assign a value to this item representing the knowledge it provides to the processor. By
default, this value is set to one for a relevant item, and zero if the item is irrelevant, however
we provide the ability to substitute a function with any number of parameters. For example, we
might wish to set the value of the first relevant item identified on an edge higher than subsequent
relevant items. This is reasonable, as we might expect subsequent relevant conversations on that
edge to contain duplicate information. Specific knowledge reduction functions, and their impact
on algorithm performance are discussed in Section 5.7.

29

4.3 Bounding the Performance
To better understand the performance of an algorithm we create bounding selection methods
representing best and worst cases for performance. We provide a perfect selection method in
Section 4.3.2 that apriori knows the pe values as an upper bound for algorithm performance,
and a random selection method in Section 4.3.1 as a lower bound.

4.3.1 The Random Method
To establish a lower bound, or worst case scenario for the performance of any employed screen-
ing strategy, we provide the method randompick(), which implements a random selection
method. In this scenario the processor is memoryless, begins screening with no prior distribu-
tion for D or conditional distribution for Pe, and has knowledge only of the network topology.
Unable to accumulate knowledge from prior screenings, randompick() simply picks a uni-
formly random edge with available unscreened items.

4.3.2 The Perfect Method
The upper bound for the performance of a screening strategy is the case where the processor has
perfect knowledge. If the processor knows the true values of pe for every edge in the network,
then the optimal selection process is a simple greedy heuristic; screen an item from the set
of available edges with the highest pe value. We implement this strategy in the perfect()

method.

4.4 Pure Exploitation
We implement a greedy Pure Exploitation (PE) algorithm in the PE() method. This simple
algorithm selects the next item for screening from the edge with the highest E[Pe] value, that
is, the edge with the highest expected probability of containing a relevant item. This algorithm
performs no exploration, however it is useful as a benchmark against more sophistical screen-
ing strategies. The Pure Exploitation strategy is optimal if Var[Pe] = 0,∀e ∈ E. We note that
although the edge selection strategy in Pure Exploitation is not complex, the algorithm is still
dependent on the non-trivial task of updating the processor’s knowledge state after each round.

4.5 Softmax
The Softmax algorithm implements a mixed strategy of exploration and exploitation. (Thrun,
1992). The algorithm assigns a weight we between zero and one to each edge, where we is

30

the probability an item on edge e will be selected for screening. Weights are assigned using a
Bolzman distribution

we =
exp(ve

K)

∑
e

exp(ve
K)

(4.2)

where ve =E[Pe] and K is a tuning parameter often referred to as temperature (Daw et al., 2006).
For small values of K, the weight of edges with large E[Pe] values is high and items on those
edges are more likely to be chosen. This is an exploitation dominated strategy. For large values
of K, all edges have similar weights and random exploration dominates. We implement this
algorithm in the softmax() method.

4.6 VBDE
The Value-Difference-Based-Exploration (VDBE) algorithm, introduced by Tokic and Palm
(2011) mixes exploration and exploitation probabilistically using a modification of an ε-greedy
algorithm, and is implemented in the VDBE() method. In each iteration, the algorithm assigns
a probability ε that exploration is chosen. When there is a low certainty regarding the expected
value of alternative actions the algorithm explores, exploiting otherwise. The value of the ex-
ploration likelihood, ε , is initially set to 1 and updated at each iteration using the formula

ε
k+1 = δ

1− e
−U
σ

1+ e
−U
σ

+(1−δ)εk, (4.3)

where U = maxuv |Ek[Puv]−Ek−1[Puv]|, the maximum difference in expectations between the
(k− 1)st screening and the kth screening. The inverse sensitivity parameter σ determines the
immediate impact a certain change in expectation has on ε . The δ parameter determines the
decay rate of ε when the system is stable, that is, when there are very few changes in the E[Pe]

values.

During exploration iterations VDBE uses the Softmax algorithm with a relatively high temper-
ature (K) value. The algorithm defaults to K = .25, however this parameter can be specified.
For exploitation iterations, the Pure Exploitation algorithm is used.

31

4.7 WEF
The Wide Exploration First (WEF) is a simple heuristic that combines a wide exploration first
policy with the Softmax algorithm, and is implemented by the WEF() method. A number of
exploration iterations is specified as an algorithm parameter, along with an exploration param-
eter B. During the exploration phase, we select the edge with the highest E[Pe] value, as long
as it has been chosen less than B times. With this policy, the smaller the value of B, the more
edges the algorithm will explore, although its exploration choices are never random. In the
exploitation phase we pick edges using Softmax with a specified temperature parameter K.

4.8 Finite Horizon MDP
Our final algorithm is a finite horizon implementation of a Markov Decision Process (MDP),
implemented by the FHM() method. The Finite Horizon MDP (FHM) algorithm can be thought
of as a type of Knowledge-Gradient policy (Frazier et al., 2009), where the decision maker
chooses at each iteration the alternative with the highest expected change in value. In our case,
the value of a particular state is only known with certainty at the final iteration (time T), so
an exact approach must look T rounds into the future to compute the best alternative. This
results in an extremely prohibitive run time of O(|E|T · Infer), where Infer is the time required
to update the knowledge state of the processor. We therefore implement the FHM algorithm
using an estimate of the state value at a determined depth as a trade off between optimality and
speed.

We begin by defining a ChoiceNode object, which holds the knowledge of the processor (hi) in
round i, with T − i rounds remaining. The ChoiceNode object has a single method getVal()

which returns the alternative with the highest value. The ChoiceNode value is calculated in
three ways:

1. If the rounds remaining equals zero (the final iteration), there is no additional value to be
gained, and the getVal() method returns 0.

2. If the depth equals zero, then we return an estimate of the states’ value, assuming that no
more belief distribution updates are performed. This value is

∑
a∈A

E[Pea] (4.4)

where A is the set of the T − i most likely relevant items under Pr[P,D|hi], and ea is the

32

edge of item a ∈ A.
3. If the depth is greater than zero, then we create an object of type RandomNode for each

available choice (edge with available item for screening), and call its getVal() method.
The ChoiceNode then returns the max value from the RandomNode getVal() calls.

The value of the RandomNode is calculated as an expectation over all possible values of the
choice. This expectation is taken pretending that the belief distribution of the parent ChoiceNode
is the truth. This is because the processor only knows that particular belief distribution, and
while he can hypothesize how it might change in the future, he does not know the true values of
the parameters. For example, consider a simple model where the probability of sudden revela-
tion (c) equals zero. In this case there are only two possible outcomes of the screening choice,
either the screened item is relevant or the screened item is irrelevant. Since we also have to take
into account the additional value of choices in future screening decisions, we create an updated
ChoiceNode for the two states of knowledge, one where the item is relevant, and one where it’s
irrelevant, and call their getVal() methods.

Figure 4.1 shows a partial example of a single iteration of FHM() for the simple intelligence
network of Figure 2.1 between three participants (A, B, C), with possible node relevance values
of high or low. FHM() starts by creating a ChoiceNode object and calling its getVal() method,
denoted by the square box at the top of the figure. Since the depth is greater than zero, we create
a RandomNode object for each of the three edges and call their getVal() methods. RandomNode
objects are denoted by circles. The getVal() process for the RandomNode created by the (A,B)
choice is shown. There are 18 possible values that can result from choosing edge (A,B), shown
in Table 4.1, and Figure 4.1 enumerates four of them. For each of the 18 possible values of
the (A,B) choice, a new ChoiceNode object is created at the depth zero level and the getVal()
method of each ChoiceNode returns an estimated value. The RandomNode then returns its value
as an expectation over all values of the depth equals zero ChoiceNodes. This process is also
completed for the (B,C) and (A,C) choices, however this is not shown in the figure. The value of
the top ChoiceNode is then calculated as the max value from the set of children RandomNodes,
{(A,B), (B,C), (A,C)}. The edge associated with this value is selected as the next edge for
screening.

33

Table 4.1: The 18 possible outcomes that can result when an edge in a graph with two relevance

levels is chosen. The outcomes are combinations of the conversation being relevant or irrelevant, and

whether the value of the nodes are revealed or not by sudden revelation.

Item Relevance Node One Relevance Node Two Relevance

0 high high
0 high low
0 high not revealed
0 low high
0 low low
0 low not revealed
0 not revealed high
0 not revealed low
0 not revealed not revealed
1 high high
1 high low
1 high not revealed
1 low high
1 low low
1 low not revealed
1 not revealed high
1 not revealed low
1 not revealed not revealed

As the number of choices available on larger graphs can result in prohibitively long run times,
we provide the ability to limit the number of edges that each ChoiceNode considers. We im-
plement this restriction with a user provided integer parameter that specifies the number of
RandomNode objects to create. With a limit specified, the ChoiceNode object will create half
the RandomNode objects from the edges with the highest E[Pe] values, and the other half by
selecting uniformly random edges from the remaining choices.

34

Figure 4.1: A partial diagram of ChoiceNode (square) and RandomNode (circle) objects created during
a single iteration of the FHM algorithm with depth = 1. FHM() begins by creating a ChoiceNode
object and callings its getVal() method, denoted by the box at the top of the �gure. Since the depth
= 1, we create a RandomNode object for each possible choice and call their getVal() methods. The
getVal() method for the RandomNode created by the (A,B) choice is shown. There are 18 possible
values that can result from choosing (A,B), and Figure 4.1 enumerates four of them. For each of
these values, a new ChoiceNode object is created with depth = 0. The getVal() method of each
ChoiceNode returns an estimated value since depth = 0. The RandomNode then returns its value as
an expectation over all values of the depth = 0 ChoiceNodes. This process is also completed, but not
shown, for the (B,C) and (A,C) choices. The value of the top ChoiceNode is then calculated as the
max value from the set of children RandomNodes,{(A,B), (B,C), (A,C)}. The edge associated with
this value is selected as the next edge for screening.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

CHAPTER 5:

Analysis

Chapter section summary:

5.1: Describes the computational performance of GraphBuilder as a function of graph size.
5.2: Parameter testing on the FHM algorithm and its effect on computational performance.
5.3: Preliminary analysis on six sub-graphs created with MapBuilder.
5.4: A comparison of GraphBuilder to an approach which doesn’t account for dependence.
5.5: Algorithm performance as a function of the probability of sudden revelation.
5.6: Analysis of the effect of graph structure on model and algorithm performance.
5.7: Algorithm performance when the knowledge gained from repeated screening of relevant

sources diminishes.

5.1 Software Performance
The average iteration time of an algorithm increases exponentially as we increase the

number of Du levels, however varying the number of Pe levels has little effect on average

iteration time.

We conduct some exploratory analysis on the performance of the GraphBuilder software to
determine how varying attributes of the model affect the computational tractability.

We start our testing with a graph of 458 nodes and 490 edges created with the infection - targeted
sub-graph creation method. Our objective is to measure the average iteration time of Softmax
with different numbers of Du and Pe levels. The probability of sudden revelation, c, is set to zero
to ensure that factor sizes remain constant. We define the average iteration time as the amount
of time in seconds it takes to select an item, screen it, and perform any subsequent inference
calculations. The number of Du levels is varied from three to five, and the number of Pe levels
from two to five, and the results shown in Figure 5.1.

The average iteration time appears to increase exponentially as we increase the number of Du

levels. Varying the Pe levels has almost no effect on average iteration time. While additional
Pe levels do require more computation, the effects appear to be overshadowed by other opera-
tions. These iteration times represent a worst case for algorithm performance, as any sudden
revelations will result in smaller factors and faster inference calculations.

37

Figure 5.1: A plot of the average iteration time for Softmax on a graph of 458 nodes and 490 edges

created with the infection - targeted method. The number of Du levels is varied from three to �ve, and

the number of Pe levels from two to �ve. The average iteration time appears to increase exponentially

as we increase the number of Du levels, while varying the number of Pe levels has almost no e�ect.

Next, we fix the number of Du levels to three, the number of Pe levels to two, and run Softmax
on graphs of increasing size. Graphs ranging in size from 400 edges to 2,500 edges are created
with the infection - targeted method, and the results plotted in Figure 5.2. The average iteration
time appears to be approximately linear in the number of edges in the graph.

5.2 FHM Performance
FHM algorithm performance remains strong even when the algorithm is extremely limited

in the number of choices it can consider before selecting an item.

In Section 4.8 we identified that even at depth one, the computational tractability of FHM might
be poor if each ChoiceNode object must consider selection of the next item to screen from
all available edges in the network. We implement a user provided restriction to limit these
choices while still providing the opportunity for exploration, and conduct parameter testing on
the FHM algorithm to access if the computational tractibility can be improved without damaging
its performance. We test the performance of the unrestrained (full) and choice limited FHM
against the perfect selection method and Pure Exploitation, with results shown in Figure 5.3.

38

Figure 5.2: A plot of the average iteration time for Softmax on graphs of increasing size, showing
that the average iteration time is approximately linear in the number of edges in the graph. All graphs
were created with the infection - targeted method. The number of Du levels is �xed at three, and the
number of Pe levels is �xed at two.

For our test network, we choose the expanded Tanzanian terrorist network used by Nevo (2011,
Chap V, pg 82). The network consists of 17 relevant nodes and 17 irrelevant nodes, with 49
edges, and is shown in Figure 5.4. We record the number of relevant conversations identified
over 20 runs of 300 iterations each, and plot the results using a beanplot (Kampstra, 2008). The
gray horizontal lines denote the observed number of relevant conversations identified in each
run, while the black line extending from each plot represents the mean. The shape of the bean
represents the shape of the distribution.

Both the full and choice limited FHM appear to have a slightly smaller variance than Pure
Exploitation, with no discernible performance loss evident between the full and choice limited
versions. Analysis of individual algorithm traces, shows that even when severely choice limited,
the amount of exploration performed in early iterations is fairly consistent. Exploration happens
when the algorithm selects an edge from among the possible choices that do not have the highest
E[Pe] values. In the choice limited algorithms, these are the edges that are selected randomly
to be possible choices. This early exploration allows FHM to more quickly identify the high pe

valued edges to exploit in later iterations.

39

Figure 5.3: We test both the unrestrained (full) and choice limited FHM against the perfect selection
method and Pure Exploitation. 20 runs of 300 iterations each are conducted on a graph of 34
nodes and 49 edges and we record the number of relevant conversations identi�ed. Detailed network
topography can be found in Nevo (2011, Chap V, p 82), and a visual in Figure 5.4. The results
are displayed using a beanplot. The gray horizontal lines denote the observed number of relevant
conversations identi�ed for each run, while the black line extending from each plot represents the
mean. The shape of the bean represents the shape of the distribution. Both the full and choice
limited FHM appear to have a slightly smaller variance than Pure Exploitation, with no discernible
performance loss evident between the full and choice limited versions.

5.3 Preliminary Algorithm Comparison
Algorithm performance is highly dependent on graph structure. Networks with a very

low density of relevant items, where the relevant nodes do not cluster, have performance

only slightly above the random selection method. FHM appears to be the most resilient

to variation in structure.

In this section we perform some preliminary testing to determine how the algorithms perform
when run on different graph structures.

5.3.1 Test Networks and Algorithm Parameters
We use the six example sub-graphs created in Chapter III for our initial algorithm testing. Sum-
mary statistics for the targeted and naive versions of the deep, wide, and infection graphs can

40

be found in Figures 3.5, 3.7, and 3.9 respectively. Each Algorithm is run 20 times with 300 iter-
ations on each of the six graphs, and the number of relevant items screened is recorded. Initial
parameters for the algorithms are taken from Nevo (2011) and are listed in Table 5.1.

Figure 5.4: The expanded Tanzanian terrorist network. Five nodes have a high relevance value, 11

nodes are of medium relevance, with the rest having low relevance. Higher edge thicknesses denote

high pe values.

5.3.2 Results and Analysis
Figure 5.5 contains the results. Results are segregated by algorithm, with the average number of
relevant items identified for each graph type shown. The random and perfect selection methods
are included as worst and best case bounds for performance.

Table 5.1: Chosen parameters for initial algorithm performance comparisons. The FHM Choice Limit
edges are picked using the method described in Section 4.8.

Algorithm Parameter Value
Random None
Perfect None
Pure Exploitation None
Softmax Temperature .08

VDBE
δ .1
σ .4

Temperature .25

FHM
Depth Limit 1
Choice Limit 10

41

The error bars denote a 95 percent confidence interval for the average number of relevant items
identified, calculated using a t-distribution. All algorithms run on the deep and wide graphs
created using the naive sub-graph creation method performed very poorly. From Figure 3.5 and
3.7 we can see that the number of relevant items available for screening was extremely low
compared to the total number of available items. An analysis of the distribution of edge pe

values shows very little variation with most pe values being extremely low. With the relevant
items therefore contained on only a few select edges, and with these edges surrounded by low
pe edges, the algorithms had a difficult time identifying the optimal edges to screen. Addition-
ally, these graphs do not contain clusters of relevant nodes. This breaks the assumption of the
inference model that dependence between the nodes exists, and leads to poor performance.

Figure 5.5: Results of algorithm testing on the six sub-graphs created in Chapter III. Results are

segregated by algorithm, with the average number of relevant items identi�ed for each graph type.

The error bars denote a 95 percent con�dence interval calculated using a t-distribution. The random

and perfect selection methods are included as worst and best case bounds for performance. Algorithms

run on the deep and wide graphs created using the naive sub-graph creation method performed very

poorly, while FHM appears to demonstrate robustness across the deep - targeted, wide - targeted,

infection - targeted, and infection - naive sub-graph construction techniques.

42

The performance of FHM appears to be fairly high on the deep - targeted, wide - targeted,
infection - targeted, and infection - Naive sub-graph construction techniques, suggesting that
FHM performance might be more robust on different graph structures than the other algorithms.
In the deep - targeted, wide - targeted, and infection - targeted graphs FHM clearly outperforms
Pure Exploitation, Softmax, and VDBE. The performance of Pure Exploitation, Softmax, and
VDBE appears to be fairly similar across the six tested graphs, with Softmax generally having a
slightly higher average number of relevant conversations identified. Since VDBE performance
does not appear to be notably greater than Softmax and FHM, and the algorithm requires three
user supplied tuning parameters, we disregard it for further trials.

5.4 The Value of the Knowledge Model
On graphs where relevant items are clustered together, GraphBuilder, which models

dependence between pe values, consistently outperforms the naive approach of Graph-

BuilderNaive across all tested algorithms. In the cases where pe values are not highly

correlated, FHM provides the best performance.

With the results of Section 5.3.2 showing that graph structure impacts the performance of the
GraphBuilder software, we conduct additional testing to attempt to understand the topology
under which the model performs well. The proposed advantage of the model implemented in
the GraphBuilder software is that it is able to account for likely correlation in edge pe values,
which we consider a realistic attribute of real-world intercepted intelligence networks. That is,
when the model screens either a relevant or irrelevant item on a particular edge, it updates not
only the E[Pe] value of the screened edge, but also edges elsewhere in the graph structure. A
natural comparison, therefore, is to test this model against one that implements a more naive
approach, that is a model that considers the E[Pe] values as independent, updating only the E[Pe]

value of the screened item’s edge.

We implement a naive version of the GraphBuilder software in a new module, GraphBuilder-
Naive, with full API documentation provided in Appendix D. GraphBuilderNaive constructs
a separate graphical model for each edge in an intercepted intelligence network, using the same
construction technique as GraphBuilder. When an item is screened, the graphical model cor-
responding to only that edge is updated, leaving the E[Pe] values throughout the rest of the graph
unchanged.

We test the performance of GraphBuilder against GraphBuilderNaive on two different graphs.

43

The first is the deep - targeted Enron sub-graph shown in Figure 3.4. The second is the Tanza-
nian terrorist network, shown in Figure 5.4. We compare the performance of Pure Exploitation,
Softmax and FHM over 20 runs of 300 iterations each, with the results displayed in Figure 5.6.

On the Tanzanian terrorist network, we can see that the GraphBuilder software outperforms
its naive counterpart on all three algorithms. We calculate a 100(α−1) confidence interval for
the percent change in the average number of relevant items identified, %chg, as

%chg± tα/2,n−1 ∗SE%chg (5.1)

where

%chg =
Rk−Rn

Rn
∗100 (5.2)

and R represents the average number of relevant items identified in the GraphBuilder (k) and
GraphBuilderNaive (n) runs. The standard error, SE%chg, is calculated as

∣∣∣∣Rk

Rn

∣∣∣∣∗
√

SE2
k

R2
k
+

SE2
n

R2
n
∗100 (5.3)

At a 95 percent confidence level, for Pure Exploitation, there is a 14.7± 5.5% improvement,
for Softmax a 15.6±5.2% improvement, and for FHM, a 63.8±13.9% improvement. We note
that while Pure Exploitation and Softmax appear to have reasonable performance in the naive
model, FHM performs very poorly.

When run on the deep - targeted sub-graph, GraphBuilderNaive outperforms GraphBuilder
on two of the three algorithms. For Pure Exploitation, there is a 25.2±3.1% decrease, and for
Softmax the decrease is 7.4±4.2%. On FHM GraphBuilder outperforms GraphBuilderNaive
by 36.6±7.3%.

Analysis of the deep - targeted sub-graph provides insight on the poor performance of Graph-
Builder. With a largest maximal clique of size three, the graph doesn’t contain any clusters
of like relevance valued nodes. Edges with high pe values are adjacent to edges with low pe

values, and no clear correlation of pe values is evident.

44

(a) Tanzanian terrorist network (b) Deep - targeted subgraph

Figure 5.6: A comparison of the performance between GraphBuilder, which models dependence

between pe values, and GraphBuilderNaive, which only updates E[Pe] values for the edge that is

screened. The error bars denote a 95 percent con�dence interval for the average number of relevant

items identi�ed, calculated using a t-distribution. When the graph contains cliques of relevant items,

such as in the Tanzanian terrorist network, the GraphBuilder model consistently outperforms its

naive counterpart. When high pe edges are obscured by adjacent low pe edges, GraphBuilder can

perform worse than the naive version, although FHM performance remains fairly robust.

This makes GraphBuilder perform poorly, for if an algorithm finds a relevant item on a par-
ticular edge, it will raise the E[Pe] values on the adjacent edges, even though on this particular
graph they are irrelevant. In contrast the Tanzanian terrorist network contains a maximal clique
of five high and medium relevance nodes, along with several smaller like relevance valued
cliques, so the updated E[Pe] values calculated by GraphBuilder are more likely to be correct.
In summary, if the graph does not bear out the dependence assumptions in the model, the model
will likely perform poorly because it will direct screening in the wrong place.

Softmax and in particular, FHM, appear to perform better than Pure Exploitation in graph struc-
tures that do not contain clusters of like relevance nodes. An analysis of some algorithm traces
shows that these algorithms are more likely to explore in the early iterations, and by doing so
can identify a high pe edge to exploit. In contrast, Pure Exploitation contains no exploration
mechanism and therefore in a structure where the high pe edges are not generally adjacent, as
in the case of the deep - targeted sub-graph, it performs poorly.

45

5.5 Sudden Revelation
On graphs where relevant nodes are not clustered together, the probability of sudden

revelation can markedly increase algorithm performance. Additionally, algorithms with

a propensity for exploration early in the iteration cycle are more robust.

We continue our analysis by testing the results of varying the probability of sudden revela-
tion. We perform this analysis on the two graphs used in Section 5.4, the Tazanian terrorist
network and the deep - targeted sub-graph. The probability of sudden revelation is varied
from zero to .1, with 20 runs of 300 iterations for Pure Exploitation, Softmax, and FHM. A
GraphBuilderNaive run with a sudden revelation probability of .1 is also provided for com-
parison purposes. Results are provided in Figures 5.7 and 5.8.

Figure 5.7: Algorithm performance under varying probabilities of sudden revelation using the Tan-

zanian terrorist network. The error bars denote a 95 percent con�dence interval for the average

number of relevant items identi�ed, calculated using a t-distribution. All three algorithms show nearly

identical performance across sudden revelation probabilities ranging from 0 to .1. A comparison to

GraphBuilderNaive is provided for comparison.

46

Figure 5.7 shows the performance of Pure Exploitation, Softmax, and FHM when run on the
Tanzanian terrorist network. All three algorithms show nearly identical performance across the
entire range of sudden revelation probabilities. A comparison to GraphBuilderNaive shows
that regardless of the sudden revelation probability, all the algorithms outperform the naive
approach.

Figure 5.8: Algorithm performance under varying probabilities of sudden revelation using the deep -

targeted sub-graph. The error bars denote a 95 percent con�dence interval for the average number

of relevant items identi�ed, calculated using a t-distribution. Increasing the probability of sudden

revelation notably improves the performance of all three algorithms, although GraphBuilderNaive

continues to outperform GraphBuilder. FHM shows remarkable resilience, with performance almost

equaling that of GraphBuilderNaive Pure Exploitation. Analysis shows that the propensity of FHM

to explore in the early iterations allows it to �nd and exploit high pe edges earlier.

Figure 5.8 shows the performance of Pure Exploitation, Softmax, and FHM when run on the
deep - targeted sub-graph. On this graph, increasing the probability of sudden revelation from
zero to .1 notably improves the performance of all three algorithms. Pure Exploitation shows
a 94.1± 14.7% improvement, Softmax a 54.4± 16.1% improvement, and FHM, a 4.5± 3.5%

47

improvement, with performance increasing as a function of the sudden revelation probability.
As shown in Section 5.4, the performance of GraphBuilderNaive is better for Pure Exploita-
tion and Softmax. The FHM algorithm performs astonishingly well when compared to Softmax
and Pure Exploitation. An analysis of algorithm traces shows that FHM’s propensity to explore
early in the iteration cycle allows it to find a high pe edge much earlier than other algorithms,
and it can then exploit this edge for the remaining iterations. It appears that on graph structures
that do not contain like relevance valued nodes in clusters, algorithms that allow for more ex-
ploration in early iterations are far more likely to find high pe edges than algorithms that do not
explore. Because the value of a relevant item remains constant, once the algorithm finds a high
value edge, it can exploit it for the remainder of the available time.

5.6 Clustering
GraphBuilder outperforms GraphBuilderNaive by the largest margin in graphs where

the density of high relevance nodes is neither very high nor very low.

With the analysis of the above sections showing that graph structure clearly impacts the perfor-
mance difference between the GraphBuilder and GraphBuilderNaive models, we explore
under which types of structures GraphBuilder has the greatest advantage.

We conduct our testing on four graphs. Each has two node relevance levels, low and high. High
relevance items are located together in maximal cliques of size four. True pe values between
high relevance valued nodes are .9, while all other edges have a pe value equal to .1. Each graph
contains a different number of high relevance maximal cliques, ranging from one to four. Graph
topography is shown in Figure 5.9.

We test the performance of Pure Exploitation, Softmax, and FHM on the four graphs in Figure
5.9, using both GraphBuilder and GraphBuilderNaive, conducting 20 runs of 300 iterations
for each combination of model, algorithm, and graph. The sudden revelation probability is fixed
to .1 for all examples, and the results are shown in Figure 5.10.

From Figure 5.10, we can see that when the density of relevant nodes is very low, as in the
case of the one cluster graph, that although GraphBuilder outperforms GraphBuilderNaive
for Softmax and FHM, the performance difference is quite minimal. The results for the four
cluster graph, where the density of relevant items is very high, is similar, with GraphBuilder

achieving a noticeable but not distinct performance advantage over GraphBuilderNaive.

48

Figure 5.9: Four arti�cially constructed graphs designed to test the a�ect of graph structure on
algorithm performance. Green nodes have high relevance, with the thick edges between high relevance
nodes having pe = .9. Red nodes have a low relevance value with all adjacent edges having pe = .1.
Each graph contains a di�erent number of size four maximal cliques of high relevance value nodes.

In the graphs with medium density of high relevance items, namely the two and three cluster
graphs, GraphBuilder outperforms GraphBuilderNaive by a much larger margin. Although
these graphs are idealized structures, they suggest that if an intercepted intelligence network
contains pockets of relevant nodes surrounded by lower relevance noise, that a correlation based
approach is likely to outperform a naive one. In the two cluster graph, algorithms that contain
more exploration, such as Softmax and FHM, outperform Pure Exploitation, as they’re more
likely to uncover the second maximal clique of high relevance nodes.

5.7 Knowledge Value Reduction
GraphBuilder performs quite well, even when the value of subsequent relevant items

from an already exploited edge decreases.

In previous sections, we assume that the value of a relevant item on a particular edge is either
one or zero, and use a metric of average number of relevant conversations identified to compare
the performance of different models and algorithms. It’s probable however, that in real world
intelligence networks, the value of a relevant piece of information is not always the same. We
envision a scenario where the value of the first relevant item identified on an edge is higher than
subsequent relevant items, due to information being repeated in the subsequent items.

49

Figure 5.10: Algorithm performance results when both GraphBuilder and GraphBuilderNaive are

run on the graphs shown in Figure 5.9. The error bars denote a 95 percent con�dence interval for the

average number of relevant items identi�ed, calculated using a t-distribution. The density of relevant

items within the graph appears to have a large impact on performance between the correlation and

naive approaches. When the density is very low or very high, as in the 1 and 4 cluster graphs,

the performance di�erence between GraphBuilder and GraphBuilderNaive is very minimal. In

graphs of medium density, such as the 2 and 3 cluster graphs, GraphBuilder notably outperforms

GraphBuilderNaive.

As described in Section 4.2, the Algorithms module is capable of accepting a user supplied
knowledge reduction function. We therefore implement a function where the value of a relevant
item discovered on an edge decreases exponentially with each additional relevant item discov-
ered. For example, if the processor screens an item on an edge that has not been explored, and
finds it to be relevant, it is assigned a value of 1. If the value of the exponential decrease is .1,

50

the next relevant item screened on that edge would have the value (1− r)K = (1− .1)1 = .9,
where r is the rate, and K is the number of relevant items already screened on that edge.

We test varying rates of reduction from .025 to .2 on the Tanzanian terrorist network of Figure
5.4, with 20 runs of 300 iterations each conducted for each algorithm. We sum the value of
the knowledge for each relevant item screened, with the results shown in Figure 5.11. We also
include the perfect and random selection methods as upper and lower bounds.

Figure 5.11: Algorithm performance results for the Tanzanian terrorist network. A reduction function
is implemented, where the value of a relevant item discovered on an edge decreases exponentially with
each additional relevant item discovered. The error bars denote a 95 percent con�dence interval for
the average knowledge accumulated, calculated using a t-distribution. GraphBuilder performs well,
with all three algorithms (Pure Exploitation, Softmax, and FHM) outperforming the random selection
method.

From Figure 5.11, we can see that GraphBuilder performs well even with the exponential
decrease function applied, with all three algorithms (Pure Exploitation, Softmax, and FHM)
outperforming the random selection method. For the baseline case with zero reduction, the

51

three algorithms achieve approximately 85 percent of the performance of the perfect selection
method. For the five exponential knowledge reduction rates, the algorithms achieve a range
of approximately 72 to 79 percent of the perfect selection method’s performance, showing that
performance loss from the optimal method is consistent over increasingly severe reduction rates.
At rates greater than .2, the available knowledge degrades too fast to allow for proper algorithm
performance.

52

CHAPTER 6:

Conclusion

In this chapter we summarize the results of our analysis, suggest some possible extensions to
the mathematical model and software, and propose additional follow-on research.

6.1 Summary and Main Conclusions
In this thesis, we focus on the challenge of an intelligence processor faced with finding the max-
imum amount of relevant information in a potentially overwhelming volume of communications
data.

From Nevo (2011), we describe a mathematical model of the intelligence screening process,
which uses techniques from graphical models, social networks, random fields and Bayesian
learning. Based on this model, we construct a library of software tools:

1. GraphBuilder: Uses the above mathematical model and methodology, and is capable of
reading in a large graph representing an intercepted intelligence network and creating an
object that represents the knowledge of the processor. Methods are supplied which allow
for updating of the processor’s knowledge as items are screened. The software is capable
of quickly calculating the joint probability distribution for D.

2. GraphBuilderNaive: Implements a naive version of the mathematical model, construct-
ing a separate GraphBuilder object for each edge in the network. In this model, the
knowledge a processor obtains from screening an item only affects the E[Pe] value for the
screened edge.

3. MapBuilder: Allows for the efficient generation of test networks representing intercepted
intelligence networks from the Enron corpus. Methods for data visualization, statistics
collection, network trimming, and IO are provided.

4. Algorithms: Contains heuristic algorithms for the screening optimization problem, as
well as bounding selection methods representing best and worst case screening scenarios.
Pure Exploitation, Softmax, Value-Difference-Based-Exploration (VDBE), Wide Explo-
ration First (WEF), and Finite Horizon Markov Decision Process (FHM) algorithms are

53

implemented.

Using these software tools, we evaluate the run-time performance of GraphBuilder, establish
parameters for the efficient running of FHM,compare GraphBuilder to GraphBuilderNaive,
and evaluate the effect of varying model parameters and network structure. Detailed analysis is
provided in Chapter V, with some insights provided in Sections 6.1.1 and 6.1.2.

6.1.1 Main Insights
1. If the graph does not bear out the dependence assumptions in the model, the model will

likely perform poorly as it will direct screening in the wrong place. On graphs where rele-
vant items are clustered together, GraphBuilder, which models dependence between pe

values, consistently outperforms the naive approach of GraphBuilderNaive across all
tested algorithms. In the cases where pe values are not highly correlated, FHM provides
the best performance. This might be of concern to intelligence agencies if the methods of
collection only obtain a small fraction of the entire communications network. Under such
a scenario, the graph structure might not have dense enough clusters of relevant sources.

2. GraphBuilder outperforms GraphBuilderNaive by the largest margin in graphs where
the density of high relevance nodes is neither very high nor very low. This suggests that
if an intercepted intelligence network contains pockets of relevant nodes surrounded by
lower relevance noise that a correlation based approach is likely to outperform a naive
one.

3. On graphs where relevant nodes are not clustered together, the probability of sudden rev-
elation can markedly increase algorithm performance. Additionally, algorithms with a
propensity for exploration early in the iteration cycle, such as FHM, are more robust.
This is because when the value of a relevant item remains constant, once the algorithm
finds a high pe valued edge, it can exploit it for the remainder of the available time.

6.1.2 Further Insights
1. GraphBuilder performs quite well even when the value of knowledge obtained from

subsequent relevant items screened from an already exploited edge decreases. This con-
dition might happen when information is repeated on subsequent relevant items that are

54

screened, lowering their value.

2. The average iteration time of an algorithm increases approximately exponentially as we
increase the number of discrete node relevance (Du) levels , however varying the number
of edge relevance (Pe) levels has little effect on average iteration time. Total algorithm
run time grows in approximately linear time with the number of edges in the graph.

3. FHM performance remains strong even at depth zero and with the algorithm extremely
limited in the number of edge choices it is allowed to consider for selection.

6.2 Possible Extensions of the Model and Software
We propose several extensions to the model and software which could increase the realism and
fidelity of future analysis and exploration.

Further FHM Modifcations. In section 4.8, we describe a heuristic to improve the computa-
tional tractability of FHM. While this choice limiting method drastically improves the perfor-
mance of the algorithm at depth zero, the large number of RandomNode objects that must be
created for each choice still results in unacceptably low performance at deeper depths.

To run FHM at depths greater than zero, sampling could be used to calculate the expectation
at each RandomNode. For example, in Table 4.1, we enumerate the 18 possible outcomes of
choosing an edge in a graph with two node relevance (Du) levels. Rather than calculating the
expectation over all 18 values, we could take the expectation over a smaller random sample of
the outcomes. This would result in much faster run times and allow for testing of the algorithm
at greater depth.

Extensions to Sudden Revelation. As described in Chapter II, the relevance of a node is
either known or unknown. A node’s relevance can only be discovered by screening an item on
an edge to which it is adjacent. In GraphBuilder, we implement a fixed probability of sudden
revelation (c), and model the probability of discovering the node relevance value of either of the
two nodes adjacent to the screened items’ edge as independent of each other.

We suggest some possible extensions to the sudden revelation portion of the model which would
require only minor software changes:

55

1. Screening an item on an edge might reveal the relevance value of a non-adjacent node.
GraphBuilder could be modified to account for a probability of discovering the rele-
vance of a third party.

2. A conversation might include information which doesn’t establish the relevance value of a
node with certainty, but provides information that would make a particular relevance value
more or less likely. This would require the model to update the probability distribution of
the Du’s.

Time Constraints. We assume that the time to screen an item is fixed and identical for every
item in the network. However, in a real-world problem, it’s reasonable that items would require
different amounts of time to screen. For example, a processor might take more time to screen a
long communication than a short one. It’s also possible that a processor is often able to quickly
identify whether an item is relevant to the intelligence query, while in some cases, establishing
the relevance could take considerable time. In cases where the processor is extremely time
limited, this modification might require different screening strategies.

Processor Errors. In our model, we do not account for errors committed by the processor.
These errors might take two principle types:

1. The processor might mis-identify a screened items’ relevance.

2. The processor might mis-identify the relevance value of a node.

Expansion of MapBuilder. MapBuilder is capable of constructing test intercepted intelli-
gence networks from the Enron corpus, but the module could be expanded to read in any arbi-
trary network. This would allow the data visualization, statistics collection, network trimming
and IO functions to be utilized on a wider variety of structures.

Advanced Analysis Visualization Tools. Analysis of algorithm results is complicated by
the high number of iterations and the computational complexity of the mathematical model.
Software that allows for easier analysis of test results could prove helpful in understanding the
run-time behavior of the algorithms. For example, a visualization tool that shows the changes
in E[Pe] values on the graph as the algorithm progresses could prove helpful in understanding
why the algorithm chooses which edges to screen.

56

6.3 Future Research
In this section we suggest some additional future research topics.

Further Parameter Tuning and Topology Studies. In this thesis, we explore how changing
model parameters, such as the probability of sudden revelation (c), impact the performance of
the screening algorithms, however, the large number of possible model and algorithm parameter
combinations means that more research should be done.

Additionally, we conduct some basic testing on the effect of graph topology on GraphBuilder

and GraphBuilderNaive. Additional testing should be conducted to determine with more
precision the conditions under which the models perform best.

Additional Algorithms. Our research focuses on testing four algorithms, Pure Exploitation,
Softmax, VDBE, and FHM. Future research could be concentrated on identifying or developing
additional heuristic algorithms to handle the information selection problem.

Techniques for Larger Graphs. Updating the probability distribution in GraphBuilder for D

on graphs of up to several thousand edges can be computed in less than a second, however, this
is still prohibitive for algorithms that require several inference calculations per iteration, such as
FHM. The rate of change of E[Pe] values decreases as the distance from the edge of the screened
item increases. Larger graphs might be able to be processed more effectively with minimal loss
of knowledge if the D probability distribution updates are done on smaller sub-graphs within
the larger network, rather than on the entire structure. This would require significant software
changes to GraphBuilder.

Real-World Data. The intercepted intelligence network parameters we utilize for our testing
are not based on real-world data. Testing of the model on real-world intelligence data might be
useful to further improve the model and validate its performance.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A:

GraphBuilder

A.1 Module GraphBuilderClass
Creates a Graphical Model Object representing the knowledge of an intelligence processor that
can be used to test intelligence collection algorithms. Uses the gPy module developed by James
Cussens at University of York, UK. Support documentation and further information concerning
gPy can be found at: http://www-users.cs.york.ac.uk/jc/teaching/agm/

NetworkX graph structures suitable as intercepted intelligence networks for a graphical model
can be constructed using the accompanying MapBuilder.py module.

A.1.1 Class GraphBuilder
The GraphBuilder class supports the creation of a graphical model and accompanying support
functions required to test intelligence collection algorithms. Specific algorithms can be found
in the Algorithms.py module.

Methods

__init__(self, G, joint_prob_prefix='joint', pij_dij_file='pij_dij.csv',
sij_file='sij.csv', c=0.5, precision=5)

Construct a graphical model by reading in a NetworkX graph and accompanying
probability distributions.

Parameters

G: Graph to construct graphical model from.
(type=NetworkX Graph)

joint_prob_prefix: Prefix of file names that contain the joint
distribution of the D_i’s.
(type=int)

59

pij_dij_file: Filename for conditional probability distribution
of P_ij, given, D_i, D_j.
(type=str)

sij_file: Filename for probability of P_ij, given S_ij.
(type=str)

precision: Number of digits to display in conditional
probability tables.
(type=int)

Return Value

Graphical model object.

count_factors(self)

Counts the number of factors in the graphical model.

Return Value

Number of factors in the graphical model.
(type=int)

count_remaining(self)

Calculates the remaining items available for screening in the model.

Return Value

The number of items available for screening.
(type=int)

60

edge_update(self, edge, value, sumout=True)

Update the graphical model after screening an item.

Parameters

edge: Edge to update.
(type=tuple)

value: Value of edge update.
(type=int)

sumout: If True, sum out S_ij factor after update.
(type=bool)

expected_di(self, node)

Displays the marginal probability distribution for a node.

Parameters

node: Graph node.
(type=str)

Return Value

Dictionary of probabilities.
(type=dict)

expected_pij(self, edge, limit='null', args=[])

Calculates the expected P_ij for a requested edge.

61

Parameters

edge: Graph edge.
(type=tuple)

limit: Name of knowledge limiting function, if specified.
(type=str)

args: A list of knowledge limit function arguments.
(type=list)

Return Value

The expected P_ij for the requested edge.
(type=float)

fCalibrate(self)

Perform final calibration so that all factors associated with both cliques and
separators are the appropriate marginal distributions. Makes permanent changes to
the model. No further updates can be performed after calibration.

highest_expected_pij(self, numEdges=None, limit='null', args=[])

Generates a list of edges sorted from highest to lowest expected probability for a
relevant item.

Parameters

numEdges: Length of list to return.
(type=int)

limit: Name of knowledge limiting function, if specified.
(type=str)

62

args: A list of knowledge limit function arguments.
(type=list)

Return Value

Descending list of expected P_ij values in tuple form (Edge, Expected
P_ij).
(type=list)

node_update(self, node, value)

Update a node relevance value from sudden revelation.

Parameters

node: Node to update.
(type=str)

value: Value of revelation.
(type=str)

normalise_factors(self)

Writes back the GFR with normalised factors from the JFR then creates a new
JFR Note: not used in the current implementation.

print_GFR(self)

Writes the GFR structure to the screen with normalised factors.

63

print_JFR(self)

Writes the JFR structure to the screen.

print_factor(self, factor, normalised=True)

Display a factor from the model.

Parameters

factor: Factor to display, eg: (’H’,’I’,(’I’,’H’)).
(type=tuple)

normalised: If True, normalise the factor values as a probability
distribution.
(type=bool)

random_draw(self, edge)

Computes a random draw on an edge using the true p_ij value and returns the
relevance value.

Parameters

edge: Edge on which to perform a random item draw.
(type=tuple)

Return Value

Relevance value of the item.
(type=int)

64

sij_add(self, edread, edge)

Add S_ij factor to the model for an edge update.

Parameters

edread: The number of items previously screened on the edge.
(type=int)

edge: Edge for which to add the S_ij factor.
(type=tuple)

Return Value

Name of the S_ij variable associated with the S_ij factor.
(type=str)

sudden_relevance_simple(self, node, c)

Computes the results of a sudden revelation realization on a node. Relevance is
calculated with a fixed probability parameter.

Parameters

node: Node on which to perform a sudden revelation check.
(type=str)

c: Probability of sudden revelation for the node.
(type=float)

Return Value

(Boolean value for whether sudden revelation realization occurred, the
node for which any sudden revelation occurred, and the value of the
revelation).
(type=tuple)

65

sumout_sij(self, sij, edge)

Sum out an S_ij variable.

Parameters

sij: Variable to eliminate.
(type=str)

tCalibrate(self)

Performs a temporary calibration by performing a calibration on a copy of the
model. Ensures that all factors associated with both cliques and separators are the
appropriate marginal distributions. Used to calculate expected P_ij values without
finalizing the model state.

true_pij_calc(self)

Calculates the true value of p_ij for every edge in the graph. Writes the results to
the NetworkX Graph in self.

writeback_GFR(self)

Write back factor changes in the JFR to the GFR model with all factors normalised
to prevent rounding error. Note: not used in the current implementation.

66

APPENDIX B:

MapBuilder

B.1 Module MapBuilder
A collection of functions for creating, manipulating, and displaying communication graphs
constructed from the Enron corpus.

B.1.1 Functions

PEDist(G, r=None, bins=None, writefile=False, datafile='PEdata.csv')

Constructs a histogram of edge p_ij values in a graph.

Parameters

G: Graph.
(type=NetworkX Graph)

r: Lower and upper range of the histogram bins. If not
provided, the range is [min,max] value.
(type=tuple)

bins: Enter an integer number of bins or a sequence giving the
bins.
(type=int or list)

writefile: If True, write the p_ij data to a CSV file.
(type=boolean)

datafile: Name of output file.
(type=str)

Return Value

Distribution of edge p_ij values.
(type=histogram)

67

add_pij(G)

Calculates the true value of p_ij for every edge in the graph.

Parameters

G: Graph.
(type=NetworkX Graph)

Return Value

Graph.
(type=NetworkX Graph)

buildEnron(outfile='enron.sqlite3')

Constructs a SQLite3 database from the Enron corpus email database. Does not
require re-running once the database is constructed.

Parameters

outfile: Name of the SQL database created.
(type=str)

buildGraph(keys=['money', 'finance'], rels=['low', 'medium', 'high'],
dbfile='enron.sqlite3', rebuild=True)

Constructs a NetworkX Graph based on specified input parameters. The function
interfaces with the Enron SQL database file constructed in the buildEnron
function.

68

Parameters

keys: Keywords that denote relevant items.
(type=list)

rels: Node relevance values D_i.
(type=list)

dbfile: Filename of the Enron SQLite3 database constructed using
buildEnron.
(type=str)

rebuild: If True, build new SQL tables in dbfile. This is only needed if
the keys have changed since the last call.
(type=bool)

Return Value

Graph.
(type=NetworkX Graph)

conDist(G, type='total', r=None, bins=None)

Constructs a histogram of the number of conversations on the edges of a graph.

Parameters

G: Graph.
(type=NetworkX Graph)

type: ’total’, or ’freq’, determine which type of edge data to produce a
distribution for. ’total’ returns the distribution of all
conversations. ’freq’ returns the distribution of just relevant
conversations.
(type=str)

r: Lower and upper range of the histogram bins. If not provided, the
range is [min, max] value of specified type.
(type=tuple)

69

bins: Either an integer number of bins or a sequence giving the bins.
(type=int or list)

Return Value

Distribution for the number of conversations (relevant or total) on edges
of the graph.
(type=histogram)

conv_Count(G)

Calculates the remaining number of available items for screening in the graph.

Parameters

G: Graph.
(type=NetworkX Graph)

Return Value

The number of available items left to screen.
(type=int)

create_di_csv(G, rels=['low', 'medium', 'high'], prefix='joint')

Creates the initial (prior) joint distributions for the D_i’s. One distribution is
created for every clique in the graph. Suitable for import into GraphBuilder.

Parameters

G: Graph.
(type=NetworkX Graph)

rels: Node relevance values for D_i.
(type=list)

70

prefix: Prefix for the filenames of the output files.
(type=str)

Return Value

Dictionary of joint probabilities.
(type=dict)

create_di_csv_naive(G, rels=['low', 'medium', 'high'], prefix='joint')

Creates the initial (prior) joint distribution for the D_i’s. Naive approach that
assumes all permutations of relevance values within a clique have equal
probability. Used for comparison to the data driven approach in create_di_csv().

Parameters

G: Graph.
(type=NetworkX Graph)

rels: Node relevance values for D_i.
(type=list)

prefix: Prefix for filenames of output files.
(type=str @return dictionary of joint probabilities)

Return Value

Dictionary of joint probabilities.
(type=dict)

create_pij_dij_csv(G, num_pijlevels=2, rels=['low', 'medium', 'high'],
file='pij_dij.csv')

Creates a conditional probability table for Pr(P_ij | D_i, D_j) using graph data.
Suitable for import into GraphBuilder.

71

Parameters

G: Graph.
(type=NetworkX Graph)

num_pijlevels: Number of discrete P_ij levels.
(type=int)

rels: Node relevance values for D_i.
(type=list)

file: Filename of output file.
(type=str)

Return Value

Dictionary of conditional probabilities.
(type=dict)

drawGraphMaxNodes(G, maxnodes, trim_freq=0, layout='spring', wf =False)

Plots a graph to the screen. Colors nodes by their membership in the maxnode list.
Is capable of saving the graph to a PDF file.

Parameters

G: Graph.
(type=NetworkX Graph)

maxnodes: List of nodes to color red.
(type=list)

trim_freq: Remove nodes where the frequency is less than this value.
(type=int)

layout: Graph layout: ’spring’, ’random’, or ’circular’.
(type=str)

wf: If True, save the graph to ’graph.pdf’ in the current
directory. Will overwrite existing files.
(type=bool)

72

drawGraphRels(G, trim_freq=0, layout='spring', cols=['g', 'b', 'r', 'y',

'purple', 'orange'], labels=False, wf =False, node_sizing='freq', scale=1.0,
max_size=500)

Plots a graph to the screen. Colors nodes by their relevance value. Is capable of
saving the graph to a PDF file.

Parameters

G: Graph.
(type=NetworkX Graph)

trim_freq: Remove nodes where the frequency is less than this
value.
(type=int)

layout: Graph layout: ’spring’, ’random’, or ’circular’.
(type=str)

cols: Colors to paint nodes.
(type=list)

labels: Print node labels.
(type=bool)

wf: If True, save the graph to ’graph.pdf’ in the current
directory. Will overwrite existing files.
(type=bool)

node_sizing: ’freq’, or ’total’. Size nodes on the number of relevant
conversations (freq), or total conversations.
(type=str)

scale: Number by which to scale the node sizes. Might be
required for proper display.
(type=float)

max_size: Limit displayed sizes of nodes to this value.
(type=int)

73

graphStats(G)

Returns summary statistics for a graph.

Parameters

G: Graph.
(type=NetworkX Graph)

maxNodeFreq(G, freq_type='freq')

Calculates the maxnode for a Graph. This is the node with either the highest
number of relevant or total conversations on its’ adjacent edges.

Parameters

G: Graph.
(type=NetworkX Graph)

freq_type: Node attribute to calculate: ’freq’ or ’total’.
(type=str)

Return Value

Maximum node size in the graph.
(type=int)

max_clique(G)

Calculates the size of the largest clique in the graph.

74

Parameters

G: Graph.
(type=NetworkX Graph)

Return Value

The size of the largest clique in the graph.
(type=int)

num_of_edges(G)

Calculates the number of edges in the graph.

Parameters

G: Graph.
(type=NetworkX Graph)

Return Value

The number of edges in the graph.
(type=int)

num_of_nodes(G)

Calculates the number of nodes in the graph.

Parameters

G: Graph.
(type=NetworkX Graph)

Return Value

The number of nodes in the graph.
(type=int)

75

pruneGraph(newG, p)

Trims a graph by pruning all degree one nodes probabilistically.

Parameters

newG: Graph to trim.
(type=NetworkX Graph)

p: Probability of pruning a degree one node.
(type=float)

Return Value

Trimmed graph.
(type=NetworkX Graph)

pruneGraphNodeByDegree(iG)

Trims a graph by removing nodes probabilistically by their degree.

Parameters

iG: Graph to trim.
(type=NetworkX Graph)

Return Value

Trimmed Graph.
(type=NetworkX Graph)

76

readGraph_CSV(node_path, edge_path)

Reads a graph from CSV files. Required Node format -> nodename, frequency,
relevance, total. Required Edge format -> from, to, ednum, edread, notrel, rel.

Parameters

node_path: Filename of node file.
(type=str)

edge_path: Filename of edge file.
(type=str)

Return Value

Graph constructed from CSV files.
(type=NetworkX Graph)

sij_generator(num_pijlevels=2, file='sij.csv')

Creates conditional probability tables for Prob(P_ij| S_ij) suitable for import into
GraphBuilder.

Parameters

num_pijlevels: The number of discrete P_ij levels.
(type=int)

file: Filename of output file.
(type=str)

Return Value

Conditional probability table.
(type=list)

77

trimGraphDeep(iG, num_of_nodes=10, p=0.8, freq_type='freq')

Creates a subset of G. Trims the graph using a "Deep" search pattern. The
function first identifies the node with the most relevance (maxnode). All
neighbors of the maxnode are added to the graph. From the list of all nodes
currently in the graph, the function then determines the node with the next highest
relevance, adding its’ neighbors to the graph. This process is repeated a specified
number of times. All degree one nodes are then trimmed probabilistically.

Parameters

iG: Graph.
(type=NetworkX Graph)

num_of_nodes: Number of times the algorithm will determine the next
node of maximum relevance (rounds).
(type=int)

p: Probability of trimming a degree one node.
(type=float)

freq_type: ’freq’ or ’total’ Determines what node attribute to use
for graph maxnodes.
(type=str)

Return Value

(Trimmed Graph, List of max_nodes followed).
(type=tuple)

trimGraphInfection(G, num_of_nodes=300, p=0.1, nzero=1, freq_type='freq')

Creates a subset of G. Trims the graph using an “Infection” method. The function
first identifies the node with the most relevance (maxnode). All edges from this

78

node are then added to the graph with probability p (infected). On the next round
of infection, all current edges leading from nodes in the graph are considered for
infection. Using this method the graph grows until the node limit is reached.

Parameters

G: Graph.
(type=NetworkX Graph)

num_of_nodes: Number of desired nodes in the graph.
(type=int)

p: Probability of infecting neighbors of nodes in the
graph.
(type=float)

nzero: Number of infected nodes at the start of algorithm.
(type=int)

freq_type: ’freq’ or ’total’ Determines what node attribute to use
for graph start point.
(type=str)

Return Value

Trimmed Graph.
(type=NetworkX Graph)

trimGraphWide(iG, num_of_nodes=3, p=0.8, freq_type='freq')

Creates a subset of G. Trims the graph using a "Wide" search pattern. The
function first identifies the node with the most relevance (maxnode). All
neighbors of the maxnode are added to the graph. From the list of nodes just
added to the graph, the function then determines the node with the next highest
relevance, adding its’ neighbors to the graph. This process is repeated a specified
number of times. All degree one nodes are then trimmed probabilistically.

79

Parameters

iG: Graph.
(type=NetworkX Graph)

num_of_nodes: Number of times the algorithm will determine the next
node of maximum relevance (rounds).
(type=int)

p: Probability of trimming a degree one node.
(type=float)

freq_type: ’freq’ or ’total’ Determines what node attribute to use
for graph maxnodes.
(type=str)

Return Value

(Trimmed Graph, List of max_nodes followed).
(type=tuple)

writeGraph_CSV(G, node_path, edge_path)

Writes the graph to CSV files. Node format -> nodename, frequency, relevance,
total. Edge format -> from, to, ednum, edread, notrel, rel.

Parameters

G: Graph.
(type=NetworkX Graph)

node_path: Filename of node file.
(type=str)

edge_path: Filename of edge file.
(type=str)

80

APPENDIX C:

Algorithms

C.1 Module Algorithms
A collection of algorithms and support functions that can be run on models created with the
GraphBuilderClass.py module.

C.1.1 Functions

FHM(mod, time, c, depth, logfile='FHMlog.txt', distances='FHMdistances.csv',
choice_limit='null', func='_simple_k_nonreduce', args=[])

Implements a Finite Depth Markov Decision Process algorithm. Writes detailed
results to a log and the distances for each iteration to CSV files. The distances
represents p_e* - p_w, or the distance between the p_ij of the optimal edge to
screen, and the p_ij of the edge chosen.

Parameters

mod: Graphical model.
(type=GraphBuilder Model)

time: Max number of items to screen.
(type=int)

c: Probability of sudden revelation on a screened edge.
(type=float)

depth: Depth of the Markov Decision Process Tree.
(type=int)

logfile: Name of output file log.
(type=str)

distances: Name of distances files.
(type=str)

choice_limit: Limit the number of edge choices the algorithm takes
under consideration.
(type=int)

func: Function to calculate knowledge gained from a
relevant item.
(type=str)

81

args: List of parameters for reducing function passed in
’func’ argument.
(type=list)

Return Value

(The number of relevant items identified, List of distances, Total run
time, Average update time).
(type=tuple)

PE(mod, time, c, logfile='PElog.txt', distances='PEdistances.csv',
func='_simple_k_nonreduce', args=[], limit='null', snapshot=False, sres=25)

Implements the Pure Exploitation (PE) algorithm. PE is a greedy algorithm that
always chooses an item from the edge with the highest expected probability of
being relevant. Ignores exploration. Considered a naive approach. Returns the
number of relevant conversations found during the time constraint, as well as a
distance list. Writes detailed results to a log and the distances for each iteration to
CSV files. The distances represents p_e* - p_w, or the distance between the p_ij
of the optimal edge to screen, and the p_ij of the edge chosen.

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)
time: Max number of items to screen.

(type=int)
c: Probability of sudden revelation for an edge.

(type=float)
logfile: Name of output log file.

(type=str)
distances: Name of distances files.

(type=str)
func: Function to calculate knowledge gained from a relevant

item.
(type=str)

args: List of parameters for reducing function passed in ’func’
argument.
(type=list)

82

limit: Only select edge if the number of relevant items already
screened from it is less than this value.
(type=int)

snapshot: Saves the state of the graph during the algorithm’s
progression.
(type=boolean)

sres: Snapshot interval.
(type=int)

Return Value
(The number of relevant items identified, List of distances, Total run
time, Average update time).
(type=tuple)

VDBE(mod, time, c, delta, T=0.25, inverse_sensitivity=0.3, logfile='VDBElog.txt',
distances='VDBEdistances.csv', func='_simple_k_nonreduce', args=[])

Implements an algorithm based on the epsilon-greedy Value Difference Based
Exploration algorithm. At each iteration the algorithm assigns a probability
epsilon that exploration is chosen. Writes detailed results to a log and the
distances for each iteration to CSV files. The distances represents p_e* - p_w, or
the distance between the p_ij of the optimal edge to screen, and the p_ij of the
edge chosen.

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)
time: Max number of items to screen.

(type=int)
c: Probability of sudden revelation on a screened

edge.
(type=float)

delta: Determines the decay rate of epsilon when the
system is stable.
(type=float)

inverse_sensitivity: Determines the immediate impact a certain
change in expectation has on epsilon.
(type=float)

83

logfile: Name of output file log.
(type=str)

distances: Name of distances files.
(type=str)

func: Function to calculate knowledge gained from
a relevant item.
(type=str)

args: List of parameters for reducing function
passed in ’func’ argument.
(type=list)

Return Value
(The number of relevant items identified, List of distances, Total run
time, Average update time).
(type=tuple)

conv_Count(G)

Calculates the number of items left in the graph available for screening.

Parameters
G: Graph.

(type=NetworkX Graph)

Return Value
The number of items available for screening.
(type=int)

highest_Pij(mod, func, args)

Finds p_e*, where e* is the edge with unscreened items that has the highest
probability of returning a relevant item. This is the true highest value of p_ij for
an edge with available items.

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)

84

func: Function to calculate knowledge gained from a relevant item.
(type=str)

args: List of parameters for reducing function.
(type=list)

Return Value
(Highest true p_ij value, Corresponding edge).
(type=tuple)

perfect(mod, time, c, logfile='perfectlog.txt', func='_simple_k_nonreduce',
args=[])

Implements a greedy algorithm where the true p_ij values are known. Represents
a best possible screening method. Returns the number of relevant items found
during the time constraint. Writes detailed results to a log.

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)
time: Max number of items to screen.

(type=int)
c: Probability of sudden revelation for an edge.

(type=float)
logfile: Name of output log file.

(type=str)
func: Function to calculate knowledge gained from a relevant item.

(type=str)
args: List of parameters for reducing function passed in ’func’

argument.
(type=list)

Return Value
The number of relevant items identified. (type=int)

85

randompick(mod, time, c, logfile='randomlog.txt',
distances='randomdistances.txt', func='_simple_k_nonreduce', args=[])

Implements a random edge selection method. Represents a worse case scenario.
Returns the number of relevant items found during the time constraint. Writes
detailed results to a log and the distances for each iteration to CSV files. The
distances represents p_e* - p_w, or the distance between the p_ij of the optimal
edge to screen, and the p_ij of the edge chosen.

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)
time: Max number of items to screen.

(type=int)
c: Probability of sudden revelation for an edge.

(type=float)
logfile: Name of output log file.

(type=str)
distances: Name of distances file.

(type=str)
func: Function to calculate knowledge gained from a relevant

item.
(type=str)

args: List of parameters for reducing function passed in ’func’
argument.
(type=list)

Return Value
(The number of relevant items identified, List of distances, Total run
time, Average update time).
(type=tuple)

reduce_pij_variance(mod, reduce)

Reduces the variance of the true p_ij values by decreasing the distance of each
edge p_ij value to the overall mean p_ij value as a proportion of the current
distance.

86

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)
reduce: Proportion to reduce distance.

(type=float)

Return Value
Graphical Model with reduced p_ij variance.
(type=GraphBuilder Model)

softmax(mod, time, c, T, logfile='SoftMaxlog.txt',
distances='SoftMaxdistances.csv', func='_simple_k_nonreduce', args=[])

Implements the Softmax algorithm. Softmax assigns each edge with a weight that
represents the probability an item on the edge is expected to be relevant, and
chooses edges to screen items from a distribution built from these weights. Writes
detailed results to a log and the distances for each iteration to CSV files. The
distances represents p_e* - p_w, or the distance between the p_ij of the optimal
edge to screen, and the p_ij of the edge chosen.

Parameters
mod: Graphical Model.

(type=GraphBuilder Model)
time: Max number of items to screen.

(type=int)
c: Probability of sudden revelation for an edge.

(type=float)
T: Temperature (0, 1].

(type=float)
logfile: Name of output log file.

(type=str)
distances: Name of distances files.

(type=str)
func: Function to calculate knowledge gained from a relevant

item.
(type=str)

args: List of parameters for reducing function passed in ’func’
argument.
(type=list)

87

Return Value
(The number of relevant items identified, List of distances, Total run
time, Average update time).
(type=tuple)

88

C.2 Module ChoiceNode
Creates a Choice Node Object.

C.2.1 Class ChoiceNode
The ChoiceNode class supports the creation of a ChoiceNode. ChoiceNodes are used in support
of Finite Depth (FHM) algorithms. Utilizes the RandomNode.py module.

Methods

__init__(self, GB, depth, rounds_remaining, choice_limit='null', func='null',
args=[])

Construct a ChoiceNode. The FHM alorithm can be initiated by creation of a
ChoiceNode and subsequent calling of its getVal() method.

Parameters
GB: GraphBuilder.

(type=GraphBuilder Object)
depth: Depth of the MDP tree (how far to look into

future).
(type=int)

rounds_remaining: The number of screening rounds remaining.
(type=int)

choice_limit: Limit the number of RandomNodes to create.
(type=int)

func: Function to calculate knowledge gained from a
relevant item.
(type=str)

args: List of parameters for reducing function passed in
’func’ argument.
(type=list)

89

getVal(self)

Returns the value of the ChoiceNode.

Return Value
(Best edge choice, Expected value of the choice).
(type=tuple)

90

C.3 Module RandomNode
Creates a RandomNode Object.

C.3.1 Class RandomNode
The RandomNode class supports the creation of a RandomNode. RandomNode is used in
support of the Finite Depth (FHM) algorithm. Requires the ChoiceNode.py module.

Methods

__init__(self, GB, edge, depth, rounds_remaining, choice_limit='null', func='null',
args=[])

Construct a RandomNode Object.

Parameters
GB: Object of type GraphBuilder.

(type=GraphBuilder Object)
edge: Edge of choice.

(type=tuple)
depth: Depth of the MDP tree (how far to look into

future).
(type=int)

rounds_remaining: The number of screening rounds remaining.
(type=int)

choice_limit: Limit the number of RandomNodes to create.
(type=int)

func: Function to calculate knowledge gained from a
relevant item.
(type=str)

args: List of parameters for reducing function passed in
’func’ argument.
(type=list)

91

getVal(self)

Returns the expected value of the RandomNode.

Return Value
Maximum expected value.
(type=float)

92

APPENDIX D:
GraphBuilderNaive

D.1 Module GraphBuilderNaive
Extends the GraphBuilderClass module by building a naive model with no correlation informa-
tion.

D.1.1 Class GraphBuilder
The GraphBuilder class supports the creation of a naive graphical model, and accompanying
support functions required to test various intelligence collection algorithms. Specific algorithms
can be found in the Algorithms.py module.

Methods

__init__(self, G, joint_prob_prefix='joint', pij_dij_file='pij_dij.csv',
sij_file='sij.csv', c=0.5, precision=5)

Construct a naive Graphical Model by reading in NetworkX graph and
accompanying probability distributions.

Parameters
G: Graph to construct graphical model from.

(type=NetworkX Graph)
joint_prob_prefix: Prefix of file names that contain the joint

distribution of the D_i’s.
(type=int)

pij_dij_file: Filename for conditional probability distribution
of P_ij, given, D_i, D_j.
(type=str)

sij_file: Filename for probability of P_ij, given S_ij.
(type=str)

precision: Number of digits to display in conditional
probability tables.
(type=int)

Return Value
Graphical model object.

93

count_remaining(self)

Calculates the remaining items available for screening in the model.

Return Value
The number of items available for screening.
(type=int)

edge_update(self, edge, value, sumout=True)

Update the graphical model after screening an item.

Parameters
edge: Edge to update.

(type=tuple)
value: Value of edge update.

(type=int)
sumout: If True, sum out the S_ij factor after update.

(type=bool)

expected_di(self, node)

Displays the marginal probability distribution for a node.

Parameters
node: Graph node.

(type=str)

Return Value
Dictionary of probabilities.
(type=dict)

94

expected_pij(self, edge, limit='null', args=[])

Calculates the expected P_ij for a requested edge.

Parameters
edge: Graph edge.

(type=tuple)
limit: Name of knowledge limiting function, if specified.

(type=str)
args: A list of knowledge limit function arguments.

(type=list)

Return Value
The expected P_ij for the requested edge.
(type=float)

highest_expected_pij(self, numEdges=None, limit='null', args=[])

Generates a list of edges sorted from highest to lowest expected probability for a
relevant item.

Parameters
numEdges: Length of list to return.

(type=int)
limit: Name of knowledge limiting function, if specified.

(type=str)
args: A list of knowledge limit function arguments.

(type=list)

Return Value
Descending list of expected P_ij values in tuple form (Edge, Expected
P_ij).
(type=list)

95

node_update(self, node, value)

Update a node relevance value from sudden revelation.

Parameters
node: Node to update.

(type=str)
value: Value of revelation.

(type=str)

random_draw(self, edge)

Computes a random draw on an edge using the true p_ij value, and returns the
relevance value.

Parameters
edge: Edge on which to perform a random item draw.

(type=tuple)

Return Value
Relevance value of the item.
(type=int)

sudden_relevance_simple(self, node, c)

Computes the results of a sudden revelation realization on a node. Relevance is
calculated with a fixed probability parameter.

Parameters
node: Node on which to perform a sudden revelation check.

(type=str)
c: Probability of sudden revelation on the node.

(type=float)

96

Return Value
(Boolean value for whether sudden revelation realization occurred, The
node for which any sudden revelation occurred, The value of the
revelation).
(type=tuple)

97

THIS PAGE INTENTIONALLY LEFT BLANK

98

REFERENCES

Atkinson, M. P., L. M. Wein. 2010. An overlapping networks approach to resource allocation
for domestic counterterrorism. Studies in Conflict & Terrorism 33(7) 618–651.

Berry, D. A., B. Fristedt. 1985. Bandit Problems. Chapman and Hall, MI.

Daw, N. D., J. P. O’Doherty, P. Dayan, B. Seymour, R. J. Dolan. 2006. Cortical substrates for
exploratory decisions in humans. Nature 441(7095) 876–879.

Deitchman, S. J. 1962. A lanchester model of guerrilla warfare. Operations Research 10(6)
818–827.

Diesner, J., K. M. Carley. 2005. Exploration of communication networks from the Enron email
corpus. SIAM International Conference on Data Mining: Workshop on Link Analysis,
Counterterrorism and Security. Citeseer, Newport Beach, CA.

Frazier, P., W. Powell, S. Dayanik. 2009. The knowledge-gradient policy for correlated normal
beliefs. INFORMS Journal on Computing 21 591–613.

Fu, M. C., J. Q. Hu, C. H. Chen, X. Xiong. 2007. Simulation allocation for determining the
best design in the process of correlated sampling. INFORMS Journal on Computing 19
101–111.

Hedley, J. H. 2007. Analysis for strategic intelligence. L.K. Johnson, ed. Strategic
Intelligence: understanding the hidden side of government. Praeger, Santa Barbara, CA.

Kampstra, P. 2008. Beanplot: A boxplot alternative for visual comparison of distributions.
Journal of Statisical Software 28.

Kaplan, E. H. 2012. OR forum—intelligence operations research: The 2010 Philip McCord
morse lecture. Operations Research 60(6) 1297–1309.

Koller, D., N. Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques
(Adaptive Computation and Machine Learning Series). 1st ed. The MIT Press, Cambridge,
MA.

Nevo, Y. 2011. Information selection in intelligence processing. Master’s thesis in operations
research, Naval Postgraduate School, Monterey, CA.

Pearl, J. 1986. Fusion, propagation and structuring in belief networks. Artificial Intelligence
29 241–288.

Schaffer, M. B. 1968. Lanchester models of guerrilla engagements. Operations Research
16(3) 457–488.

99

Thrun, S. B. 1992. Handbook of intelligent control: Neural, fuzzy and adaptive approaches,
chap. The role of exploration in learning control. Van Nostrand Reinhold, Florence, KY,
527–559.

Tokic, M., G. Palm. 2011. Value-difference based exploration: adaptive control between
epsilon-greedy and softmax. KI 2011: Advances in Artificial Intelligence. Springer-Verlag,
Berlin, Germany, 335–346.

Zlotnik, J. 1967. A theorem for prediction. Studies in Intelligence 11 1–2.

100

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudly Knox Library
Naval Postgraduate School
Monterey, California

101

